Pokrajac David D, Sivakumar Poopalasingam, Markushin Yuriy, Milovic Daniela, Holness Gary, Liu Jinjie, Melikechi Noureddine, Rana Mukti
1Delaware State University, Dover, DE 19901 USA.
2Southern Illinois University Carbondale, Carbondale, IL 62901 USA.
Int J Data Sci Anal. 2019;8(2):213-220. doi: 10.1007/s41060-018-00172-y. Epub 2019 Feb 8.
Laser-induced breakdown spectroscopy (LIBS) is a multi-elemental and real-time analytical technique with simultaneous detection of all the elements in any type of sample matrix including solid, liquid, gas, and aerosol. LIBS produces vast amount of data which contains information on elemental composition of the material among others. Classification and discrimination of spectra produced during the LIBS process are crucial to analyze the elements for both qualitative and quantitative analysis. This work reports the design and modeling of optimal classifier for LIBS data classification and discrimination using the apparatus of statistical theory of detection. We analyzed the noise sources associated during the LIBS process and created a linear model of an echelle spectrograph system. We validated our model based on assumptions through statistical analysis of "dark signal" and laser-induced breakdown spectra from the database of National Institute of Science and Technology. The results obtained from our model suggested that the quadratic classifier provides optimal performance if the spectroscopy signal and noise can be considered Gaussian.
激光诱导击穿光谱(LIBS)是一种多元素实时分析技术,能够同时检测任何类型样品基质(包括固体、液体、气体和气溶胶)中的所有元素。LIBS会产生大量数据,其中包含有关材料元素组成等方面的信息。对LIBS过程中产生的光谱进行分类和鉴别对于元素的定性和定量分析至关重要。这项工作报告了使用检测统计理论的方法对LIBS数据进行分类和鉴别的最优分类器的设计与建模。我们分析了LIBS过程中相关的噪声源,并创建了一个阶梯光栅光谱仪系统的线性模型。我们通过对美国国家标准与技术研究院数据库中的“暗信号”和激光诱导击穿光谱进行统计分析,基于假设对我们的模型进行了验证。从我们的模型获得的结果表明,如果光谱信号和噪声可被视为高斯分布,二次分类器将提供最优性能。