MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
Curr Opin Biotechnol. 2017 Dec;48:168-179. doi: 10.1016/j.copbio.2017.04.004. Epub 2017 Jun 9.
Organic chemistry has systematically probed the chemical determinants of function in nucleic acids by variation to the nucleobase, sugar ring and backbone moieties to build synthetic genetic polymers. Concomitantly, protein engineering has advanced to allow the discovery of polymerases capable of utilizing modified nucleotide analogs. A conjunction of these two lines of investigation in nucleotide chemistry and molecular biology has given rise to a new field of synthetic genetics dedicated to the exploration of the capacity of these novel, synthetic nucleic acids for the storage and propagation of genetic information, for evolution and for crosstalk, that is, information exchange with the natural genetic system. Here we summarize recent progress in synthetic genetics, specifically in the design of novel unnatural basepairs to expand the genetic alphabet as well as progress in engineering polymerases capable of templated synthesis, reverse transcription and evolution of synthetic genetic polymers.
有机化学通过对碱基、糖环和骨架部分的改变,系统性地探究了核酸功能的化学决定因素,从而构建了合成遗传聚合物。同时,蛋白质工程也取得了进展,使得能够发现利用修饰核苷酸类似物的聚合酶。这两个研究领域——核苷酸化学和分子生物学的结合,产生了一个新的合成遗传学领域,致力于探索这些新型合成核酸在存储和传播遗传信息、进化以及串扰(即与自然遗传系统的信息交换)方面的能力。在这里,我们总结了合成遗传学的最新进展,特别是在设计新型非天然碱基对以扩展遗传密码子,以及在能够进行模板合成、逆转录和合成遗传聚合物进化的聚合酶工程方面的进展。