Suppr超能文献

利用个人拟合统计量检测调查研究中的异常值。

Using Person Fit Statistics to Detect Outliers in Survey Research.

作者信息

Felt John M, Castaneda Ruben, Tiemensma Jitske, Depaoli Sarah

机构信息

Psychological Sciences, University of California, MercedMerced, CA, United States.

出版信息

Front Psychol. 2017 May 26;8:863. doi: 10.3389/fpsyg.2017.00863. eCollection 2017.

Abstract

When working with health-related questionnaires, outlier detection is important. However, traditional methods of outlier detection (e.g., boxplots) can miss participants with "atypical" responses to the questions that otherwise have similar total (subscale) scores. In addition to detecting outliers, it can be of clinical importance to determine the reason for the outlier status or "atypical" response. The aim of the current study was to illustrate how to derive person fit statistics for outlier detection through a statistical method examining person fit with a health-based questionnaire. Patients treated for Cushing's syndrome ( = 394) were recruited from the Cushing's Support and Research Foundation's (CSRF) listserv and Facebook page. Patients were directed to an online survey containing the CushingQoL (English version). A two-dimensional graded response model was estimated, and person fit statistics were generated using the statistic. Conventional outlier detections methods revealed no outliers reflecting extreme scores on the subscales of the CushingQoL. However, person fit statistics identified 18 patients with "atypical" response patterns, which would have been otherwise missed ( > |±2.00|). While the conventional methods of outlier detection indicated no outliers, person fit statistics identified several patients with "atypical" response patterns who otherwise appeared average. Person fit statistics allow researchers to delve further into the underlying problems experienced by these "atypical" patients treated for Cushing's syndrome. Annotated code is provided to aid other researchers in using this method.

摘要

在处理与健康相关的问卷时,异常值检测很重要。然而,传统的异常值检测方法(如箱线图)可能会遗漏那些对问题有“非典型”回答但总分(分量表)相似的参与者。除了检测异常值外,确定异常值状态或“非典型”回答的原因在临床上也可能很重要。本研究的目的是说明如何通过一种基于健康问卷的个体拟合统计方法来进行异常值检测。从库欣综合征支持与研究基金会(CSRF)的邮件列表和脸书页面招募了394名接受库欣综合征治疗的患者。患者被引导至一个包含库欣生活质量问卷(英文版本)的在线调查。估计了一个二维分级反应模型,并使用该统计量生成个体拟合统计量。传统的异常值检测方法未发现反映库欣生活质量问卷分量表极端分数的异常值。然而,个体拟合统计量识别出18名具有“非典型”反应模式的患者,否则这些患者会被遗漏(> |±2.00|)。虽然传统的异常值检测方法未显示异常值,但个体拟合统计量识别出了几名具有“非典型”反应模式但其他方面看起来正常的患者。个体拟合统计量使研究人员能够进一步探究这些接受库欣综合征治疗的“非典型”患者所经历的潜在问题。提供了带注释的代码以帮助其他研究人员使用此方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验