DOE Joint BioEnergy Institute, Emeryville, CA 94608, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States.
DOE Joint BioEnergy Institute, Emeryville, CA 94608, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Biomass Science and Conversion Technology Department, Sandia National Laboratories, Livermore, CA 94551, United States; Biological and Materials Science Center, Sandia National Laboratories, Livermore, CA 94551, United States.
Metab Eng. 2017 Jul;42:115-125. doi: 10.1016/j.ymben.2017.06.004. Epub 2017 Jun 10.
Fatty alcohols in the C12-C18 range are used in personal care products, lubricants, and potentially biofuels. These compounds can be produced from the fatty acid pathway by a fatty acid reductase (FAR), yet yields from the preferred industrial host Saccharomyces cerevisiae remain under 2% of the theoretical maximum from glucose. Here we improved titer and yield of fatty alcohols using an approach involving quantitative analysis of protein levels and metabolic flux, engineering enzyme level and localization, pull-push-block engineering of carbon flux, and cofactor balancing. We compared four heterologous FARs, finding highest activity and endoplasmic reticulum localization from a Mus musculus FAR. After screening an additional twenty-one single-gene edits, we identified increasing FAR expression; deleting competing reactions encoded by DGA1, HFD1, and ADH6; overexpressing a mutant acetyl-CoA carboxylase; limiting NADPH and carbon usage by the glutamate dehydrogenase encoded by GDH1; and overexpressing the Δ9-desaturase encoded by OLE1 as successful strategies to improve titer. Our final strain produced 1.2g/L fatty alcohols in shake flasks, and 6.0g/L in fed-batch fermentation, corresponding to ~ 20% of the maximum theoretical yield from glucose, the highest titers and yields reported to date in S. cerevisiae. We further demonstrate high-level production from lignocellulosic feedstocks derived from ionic-liquid treated switchgrass and sorghum, reaching 0.7g/L in shake flasks. Altogether, our work represents progress towards efficient and renewable microbial production of fatty acid-derived products.
C12-C18 范围内的脂肪醇用于个人护理产品、润滑剂和潜在的生物燃料。这些化合物可以通过脂肪酸还原酶(FAR)从脂肪酸途径中产生,然而,从首选的工业宿主酿酒酵母中获得的产率仍低于葡萄糖理论最大值的 2%。在这里,我们通过涉及蛋白质水平和代谢通量的定量分析、工程酶水平和定位、碳通量的推拉阻断工程以及辅助因子平衡的方法,来提高脂肪醇的产量和产率。我们比较了四种异源 FAR,发现来自 Mus musculus FAR 的酶具有最高的活性和内质网定位。在筛选了另外二十一个单基因编辑后,我们确定了 FAR 表达的增加;删除了 DGA1、HFD1 和 ADH6 编码的竞争反应;过表达突变型乙酰辅酶 A 羧化酶;通过编码 GDH1 的谷氨酸脱氢酶限制 NADPH 和碳的使用;并过表达编码 OLE1 的 Δ9 去饱和酶作为提高产量的成功策略。我们的最终菌株在摇瓶中产生了 1.2g/L 的脂肪醇,在补料分批发酵中产生了 6.0g/L,这对应于葡萄糖理论最大产量的约 20%,是迄今为止在酿酒酵母中报告的最高产量和产率。我们还进一步证明了从离子液体处理的柳枝稷和高粱衍生的木质纤维素原料中进行高水平生产,在摇瓶中达到 0.7g/L。总之,我们的工作代表了朝着高效和可再生微生物生产脂肪酸衍生产品的方向取得的进展。