Suppr超能文献

用于中国儿童骨龄自动评估的轻量级深度学习系统:提高临床效率和诊断准确性。

Lightweight deep learning system for automated bone age assessment in Chinese children: enhancing clinical efficiency and diagnostic accuracy.

作者信息

Hai Pang, Bin Zhang, Kesheng Liu, Cong Li, Fei Xu

机构信息

Artificial Intelligence Research Center, Facilitate Healthy Developments for Children (Hebei) Technology Co., Ltd., Shijiazhuang, Hebei, China.

出版信息

Front Endocrinol (Lausanne). 2025 Jul 18;16:1604133. doi: 10.3389/fendo.2025.1604133. eCollection 2025.

Abstract

Bone age assessment (BAA) is a critical diagnostic tool for evaluating skeletal maturity and monitoring growth disorders. Traditional clinical methods, however, are highly subjective, time-consuming, and reliant on clinician expertise, leading to inefficiencies and variability in accuracy. To address these limitations, this study introduces a novel lightweight two-stage deep learning framework based on the Chinese 05 BAA standard. In the first stage, the YOLOv8 algorithm precisely localizes 13 key epiphyses in hand radiographs, achieving a mean Average Precision (mAP) of 99.5% at Intersection over Union (IoU) = 0.5 and 94.0% within IoU 0.5-0.95, demonstrating robust detection performance. The second stage employs a modified EfficientNetB3 architecture for fine-grained epiphyseal grade classification, enhanced by the Rectified Adam (RAdam) optimizer and a composite loss function combining center loss and weighted cross-entropy to mitigate class imbalance. The model attains an average accuracy of 80.3% on the training set and 81.5% on the test set, with a total parameter count of 15.8 million-56-86% fewer than comparable models (e.g., ResNet50, InceptionV3). This lightweight design reduces computational complexity, enabling faster inference while maintaining diagnostic precision. This framework holds transformative potential for pediatric endocrinology and orthopedics by standardizing BAA, improving diagnostic equity, and optimizing resource use. Success hinges on addressing technical, ethical, and adoption challenges through collaborative efforts among developers, clinicians, and regulators. Future directions might include multimodal AI integrating clinical data (e.g., height, genetics) for holistic growth assessments.

摘要

骨龄评估(BAA)是评估骨骼成熟度和监测生长障碍的关键诊断工具。然而,传统的临床方法主观性强、耗时且依赖临床医生的专业知识,导致效率低下且准确性存在差异。为解决这些局限性,本研究引入了一种基于中国05 BAA标准的新型轻量级两阶段深度学习框架。在第一阶段,YOLOv8算法对手部X光片中的13个关键骨骺进行精确定位,在交并比(IoU)=0.5时平均精度均值(mAP)达到99.5%,在IoU 0.5 - 0.�5范围内达到94.0%,展现出强大的检测性能。第二阶段采用改进的EfficientNetB3架构进行细粒度骨骺分级分类,并通过修正Adam(RAdam)优化器和结合中心损失与加权交叉熵的复合损失函数来减轻类别不平衡问题。该模型在训练集上的平均准确率为80.3%,在测试集上为81.5%,总参数数量为1580万个,比同类模型(如ResNet50、InceptionV3)少56 - 86%。这种轻量级设计降低了计算复杂度,在保持诊断精度的同时实现了更快的推理。该框架通过规范骨龄评估、提高诊断公平性和优化资源利用,为儿科内分泌学和骨科带来了变革性潜力。成功取决于开发者、临床医生和监管机构之间的合作,以应对技术、伦理和采用方面的挑战。未来的方向可能包括整合临床数据(如身高、遗传学)的多模态人工智能,以进行全面的生长评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c96e/12313490/fa48606db7f4/fendo-16-1604133-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验