Suppr超能文献

来自聚腺苷酸选择和核糖体RNA去除的RNA测序文库的定量表达估计的整合。

Integration of quantitated expression estimates from polyA-selected and rRNA-depleted RNA-seq libraries.

作者信息

Bush Stephen J, McCulloch Mary E B, Summers Kim M, Hume David A, Clark Emily L

机构信息

The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.

出版信息

BMC Bioinformatics. 2017 Jun 13;18(1):301. doi: 10.1186/s12859-017-1714-9.

Abstract

BACKGROUND

The availability of fast alignment-free algorithms has greatly reduced the computational burden of RNA-seq processing, especially for relatively poorly assembled genomes. Using these approaches, previous RNA-seq datasets could potentially be processed and integrated with newly sequenced libraries. Confounding factors in such integration include sequencing depth and methods of RNA extraction and selection. Different selection methods (typically, either polyA-selection or rRNA-depletion) omit different RNAs, resulting in different fractions of the transcriptome being sequenced. In particular, rRNA-depleted libraries sample a broader fraction of the transcriptome than polyA-selected libraries. This study aimed to develop a systematic means of accounting for library type that allows data from these two methods to be compared.

RESULTS

The method was developed by comparing two RNA-seq datasets from ovine macrophages, identical except for RNA selection method. Gene-level expression estimates were obtained using a two-part process centred on the high-speed transcript quantification tool Kallisto. Firstly, a set of reference transcripts was defined that constitute a standardised RNA space, with expression from both datasets quantified against it. Secondly, a simple ratio-based correction was applied to the rRNA-depleted estimates. The outcome is an almost perfect correlation between gene expression estimates, independent of library type and across the full range of levels of expression.

CONCLUSION

A combination of reference transcriptome filtering and a ratio-based correction can create equivalent expression profiles from both polyA-selected and rRNA-depleted libraries. This approach will allow meta-analysis and integration of existing RNA-seq data into transcriptional atlas projects.

摘要

背景

快速无比对算法的出现极大地减轻了RNA测序数据处理的计算负担,尤其是对于组装相对较差的基因组。使用这些方法,以前的RNA测序数据集有可能被处理并与新测序的文库整合。这种整合中的混杂因素包括测序深度以及RNA提取和选择方法。不同的选择方法(通常是polyA选择或rRNA去除)会遗漏不同的RNA,导致转录组中被测序的部分不同。特别是,与polyA选择的文库相比,rRNA去除的文库对转录组的采样范围更广。本研究旨在开发一种系统的方法来考虑文库类型,以便能够比较这两种方法的数据。

结果

该方法是通过比较来自绵羊巨噬细胞的两个RNA测序数据集开发的,除了RNA选择方法外,这两个数据集完全相同。基因水平的表达估计是通过一个以高速转录本定量工具Kallisto为中心的两部分过程获得的。首先,定义一组参考转录本,构成一个标准化的RNA空间,并根据该空间对两个数据集的表达进行定量。其次,对rRNA去除的估计值应用基于简单比率的校正。结果是基因表达估计之间几乎具有完美的相关性,与文库类型无关,且涵盖了整个表达水平范围。

结论

参考转录组过滤和基于比率的校正相结合,可以从polyA选择和rRNA去除的文库中创建等效的表达谱。这种方法将允许对现有RNA测序数据进行荟萃分析,并将其整合到转录图谱项目中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82a4/5470212/ca6743703a9f/12859_2017_1714_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验