Suppr超能文献

锰诱导C57BL/6小鼠肠道微生物群出现性别特异性扰动。

Manganese-induced sex-specific gut microbiome perturbations in C57BL/6 mice.

作者信息

Chi Liang, Gao Bei, Bian Xiaoming, Tu Pengcheng, Ru Hongyu, Lu Kun

机构信息

Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 27599, United States.

Department of Environmental Health Science, University of Georgia, Athens, GA 30602, United States.

出版信息

Toxicol Appl Pharmacol. 2017 Sep 15;331:142-153. doi: 10.1016/j.taap.2017.06.008. Epub 2017 Jun 10.

Abstract

Overexposure to manganese (Mn) leads to toxic effects, such as promoting the development of Parkinson's-like neurological disorders. The gut microbiome is deeply involved in immune development, host metabolism, and xenobiotics biotransformation, and significantly influences central nervous system (CNS) via the gut-brain axis, i.e. the biochemical signaling between the gastrointestinal tract and the CNS. However, it remains unclear whether Mn can affect the gut microbiome and its metabolic functions, particularly those linked to neurotoxicity. In addition, sex-specific effects of Mn have been reported, with no mechanism being identified yet. Recently, we have shown that the gut microbiome is largely different between males and females, raising the possibility that differential gut microbiome responses may contribute to sex-selective toxicity of Mn. Here, we applied high-throughput sequencing and gas chromatography-mass spectrometry (GC-MS) metabolomics to explore how Mn exposure affects the gut microbiome and its metabolism in C57BL/6 mice. Mn exposure perturbed the gut bacterial compositions, functional genes and fecal metabolomes in a highly sex-specific manner. In particular, bacterial genes and/or key metabolites of neurotransmitter synthesis and pro-inflammatory mediators are significantly altered by Mn exposure, which can potentially affect chemical signaling of gut-brain interactions. Likewise, functional genes involved in iron homeostasis, flagellar motility, quorum sensing, and Mn transportation/oxidation are also widely changed by Mn exposure. Taken together, this study has demonstrated that Mn exposure perturbs the gut microbiome and its metabolic functions, which highlights the potential role of the gut microbiome in Mn toxicity, particularly its sex-specific toxic effects.

摘要

过度暴露于锰(Mn)会导致毒性作用,例如促进帕金森氏症样神经疾病的发展。肠道微生物群深度参与免疫发育、宿主代谢和外源性物质的生物转化,并通过肠-脑轴(即胃肠道与中枢神经系统之间的生化信号传导)显著影响中枢神经系统(CNS)。然而,目前尚不清楚锰是否会影响肠道微生物群及其代谢功能,特别是那些与神经毒性相关的功能。此外,已有报道称锰存在性别特异性影响,但尚未确定其机制。最近,我们发现雄性和雌性之间的肠道微生物群存在很大差异,这增加了肠道微生物群的差异反应可能导致锰的性别选择性毒性的可能性。在此,我们应用高通量测序和气相色谱-质谱联用(GC-MS)代谢组学技术,来探究锰暴露如何影响C57BL/6小鼠的肠道微生物群及其代谢。锰暴露以高度性别特异性的方式扰乱了肠道细菌组成、功能基因和粪便代谢组。特别是,锰暴露显著改变了神经递质合成和促炎介质的细菌基因和/或关键代谢产物,这可能会影响肠-脑相互作用的化学信号传导。同样,参与铁稳态、鞭毛运动、群体感应和锰运输/氧化的功能基因也因锰暴露而广泛改变。综上所述,本研究表明锰暴露会扰乱肠道微生物群及其代谢功能,这突出了肠道微生物群在锰毒性,特别是其性别特异性毒性作用中的潜在作用。

相似文献

1
Manganese-induced sex-specific gut microbiome perturbations in C57BL/6 mice.锰诱导C57BL/6小鼠肠道微生物群出现性别特异性扰动。
Toxicol Appl Pharmacol. 2017 Sep 15;331:142-153. doi: 10.1016/j.taap.2017.06.008. Epub 2017 Jun 10.

引用本文的文献

4
Heart Failure and Gut Microbiota: What Is Cause and Effect?心力衰竭与肠道微生物群:何为因,何为果?
Research (Wash D C). 2025 Feb 20;8:0610. doi: 10.34133/research.0610. eCollection 2025.
10
Trace elements in pancreatic cancer.胰腺癌中的微量元素
Cancer Med. 2024 Jul;13(14):e7454. doi: 10.1002/cam4.7454.

本文引用的文献

1
The microbiome: A key regulator of stress and neuroinflammation.微生物群:压力和神经炎症的关键调节因子。
Neurobiol Stress. 2016 Mar 4;4:23-33. doi: 10.1016/j.ynstr.2016.03.001. eCollection 2016 Oct.
5
Chromium(VI) bioremediation by probiotics.益生菌对六价铬的生物修复
J Sci Food Agric. 2016 Sep;96(12):3977-82. doi: 10.1002/jsfa.7725. Epub 2016 Apr 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验