School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, QLD 4072, Australia
School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, QLD 4072, Australia.
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):6818-6823. doi: 10.1073/pnas.1620232114. Epub 2017 Jun 13.
Copper (Cu) is a key antibacterial component of the host innate immune system and almost all bacterial species possess systems that defend against the toxic effects of excess Cu. The Cu tolerance system in Gram-negative bacteria is composed minimally of a Cu sensor (CueR) and a Cu export pump (CopA). The and genes are encoded on the chromosome typically as a divergent but contiguous operon. In , and are separated by two additional genes, and , which confer glutamine (Gln)-dependent acid tolerance and contribute to the glutamate (Glu)-dependent acid resistance system in this organism. Here we show that Cu strongly inhibits growth of a ∆ mutant strain in acidic cultures. We further demonstrate that Cu stress impairs the pathway for Glu biosynthesis via glutamate synthase, leading to decreased intracellular levels of Glu. Addition of exogenous Glu rescues the ∆ mutant from Cu stress in acidic conditions. Gln is also protective but this relies on the activities of YbaS and YbaT. Notably, expression of both enzymes is up-regulated during Cu stress. These results demonstrate a link between Cu stress, acid stress, and Glu/Gln metabolism, establish a role for YbaS and YbaT in Cu tolerance, and suggest that subtle changes in core metabolic pathways may contribute to overcoming host-imposed copper toxicity.
铜 (Cu) 是宿主先天免疫系统的关键抗菌成分,几乎所有细菌物种都拥有防御过量 Cu 毒性的系统。革兰氏阴性菌的 Cu 耐受系统至少由 Cu 传感器 (CueR) 和 Cu 输出泵 (CopA) 组成。 和 基因通常作为一个发散但连续的操纵子编码在染色体上。在 中, 和 由另外两个基因 和 隔开,这两个基因赋予谷氨酰胺 (Gln) 依赖性酸耐受,并有助于该生物体中的谷氨酸 (Glu) 依赖性酸抗性系统。在这里,我们表明 Cu 强烈抑制了酸性培养物中 ∆突变株的生长。我们进一步证明 Cu 应激通过谷氨酸合酶损害 Glu 生物合成途径,导致细胞内 Glu 水平降低。添加外源性 Glu 可在酸性条件下挽救 ∆突变株免受 Cu 应激。Gln 也具有保护作用,但这依赖于 YbaS 和 YbaT 的活性。值得注意的是,两种酶的表达在 Cu 应激期间均上调。这些结果表明 Cu 应激、酸应激和 Glu/Gln 代谢之间存在联系,确立了 YbaS 和 YbaT 在 Cu 耐受中的作用,并表明核心代谢途径的细微变化可能有助于克服宿主施加的铜毒性。