Suppr超能文献

活性与非活性杜鹃提取物的代谢组学比较及来自粘毛杜鹃的一种抗菌大麻素的鉴定

Metabolome Comparison of Bioactive and Inactive Rhododendron Extracts and Identification of an Antibacterial Cannabinoid(s) from Rhododendron collettianum.

作者信息

Hakeem Said Inamullah, Rezk Ahmed, Hussain Ishtiaq, Grimbs Anne, Shrestha Abhinandan, Schepker Hartwig, Brix Klaudia, Ullrich Matthias S, Kuhnert Nikolai

机构信息

Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759, Bremen, Germany.

Stiftung Bremer Rhododendronpark, Deliusweg 40, 28359, Bremen, Germany.

出版信息

Phytochem Anal. 2017 Sep;28(5):454-464. doi: 10.1002/pca.2694. Epub 2017 Jun 13.

Abstract

INTRODUCTION

The science of metabolomics offers the possibility to measure full secondary plant metabolomes with limited experimental effort to allow identification of metabolome differences using principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) of liquid chromatography mass spectrometry (LC-MS) data.

OBJECTIVE

To demonstrate a bioinformatics driven hypothesis generator for identification of biologically active compounds in plant crude extracts, which is validated by activity guided fractionation.

METHODOLOGY

Crude extracts of Rhododendron leaves were tested for their antibacterial activity using agar diffusion and minimum inhibitory concentration assays. Extracts were profiled by LC-MS. PCA and PLS-DA were used for differentiation of bioactive and inactive extracts and their metabolites. Preparative-high performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) spectroscopy were used for separation and structure elucidation of pure compound(s) respectively.

RESULTS

An antibacterial Rhododendron collettianum was compared to a series of inactive extracts. Three metabolites were found to distinguish R. collettianum from other species indicating the ability of PCA and PLS-DA to suggest potential bioactive substances. An activity-guided fractionation of R. collettianum extracts was carried out and cannabiorcichromenic acid (CCA) was identified as antibacterial compound thereby validating the PCA and PLS-DA generated hypothesis. Four mammalian cell lines were used to estimate possible cytotoxicity of CCA.

CONCLUSION

It was shown that bioinformatics tools facilitate early stage identification of a biologically active compound(s) using LC-MS data, which reduce complexity and number of separation steps in bioactive screening. Copyright © 2017 John Wiley & Sons, Ltd.

摘要

引言

代谢组学科学提供了一种可能,即通过有限的实验工作来测量完整的植物次生代谢组,从而利用液相色谱质谱(LC-MS)数据的主成分分析(PCA)和偏最小二乘判别分析(PLS-DA)来识别代谢组差异。

目的

展示一种由生物信息学驱动的假设生成器,用于识别植物粗提物中的生物活性化合物,并通过活性导向分级分离进行验证。

方法

使用琼脂扩散法和最低抑菌浓度测定法测试了杜鹃花叶片粗提物的抗菌活性。通过LC-MS对提取物进行分析。PCA和PLS-DA用于区分生物活性和非活性提取物及其代谢物。制备型高效液相色谱(HPLC)和核磁共振(NMR)光谱分别用于纯化合物的分离和结构解析。

结果

将一种具有抗菌活性的杜鹃(Rhododendron collettianum)与一系列非活性提取物进行了比较。发现三种代谢物可将R. collettianum与其他物种区分开来,这表明PCA和PLS-DA能够提示潜在的生物活性物质。对R. collettianum提取物进行了活性导向分级分离,并鉴定出大麻二酚酸(CCA)为抗菌化合物,从而验证了PCA和PLS-DA生成的假设。使用四种哺乳动物细胞系评估了CCA可能的细胞毒性作用。

结论

结果表明,生物信息学工具有助于利用LC-MS数据在早期阶段识别生物活性化合物,这减少了生物活性筛选中分离步骤的复杂性和数量。版权所有© 2017约翰威立父子有限公司。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验