Suppr超能文献

基于惩罚线性判别分析的膀胱癌患者分类

Classification of Bladder Cancer Patients via Penalized Linear Discriminant Analysis.

作者信息

Raeisi Shahraki Hadi, Bemani Peyman, Jalali Maryam

机构信息

Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. Email:

出版信息

Asian Pac J Cancer Prev. 2017 May 1;18(5):1453-1457. doi: 10.22034/APJCP.2017.18.5.1453.

Abstract

Objectives: In order to identify genes with the greatest contribution to bladder cancer, we proposed a sparse model making the best discrimination from other patients. Methods: In a cross-sectional study, 22 genes with a key role in most cancers were considered in 21 bladder cancer patients and 14 participants of the same age (± 3 years) without bladder cancer in Shiraz city, Southern Iran. Real time-PCR was carried out using SYBR Green and for each of the 22 target genes 2-Δct as a quantitative index of gene expression was reported. We determined the most affective genes for the discriminant vector by applying penalized linear discriminant analysis using LASSO penalties. All the analyses were performed using SPSS version 18 and the penalized LDA package in R.3.1.3 software. Results: Using penalized linear discriminant analysis led to elimination of 13 less important genes. Considering the simultaneous effects of 22 genes with important influence on many cancers, it was found that TGFβ, IL12A, Her2, MDM2, CTLA-4 and IL-23 genes had the greatest contribution in classifying bladder cancer patients with the penalized linear discriminant vector. The receiver operating characteristic (ROC) curve revealed that the proposed vector had good performance with minimal (only 3) mis- classification. The area under the curve (AUC) of our proposed test was 96% (95% CI: 83%- 100%) and sensitivity, specificity, positive and negative predictive values were 90.5%, 85.7%, 90.5% and 85.7%, respectively. Conclusions: The penalized discriminant method can be considered as appropriate for classifying bladder cancer cases and searching for important biomarkers.

摘要

目的

为了识别对膀胱癌贡献最大的基因,我们提出了一种能与其他患者进行最佳区分的稀疏模型。方法:在一项横断面研究中,对伊朗南部设拉子市的21例膀胱癌患者和14名年龄相同(±3岁)的非膀胱癌参与者,考虑了在大多数癌症中起关键作用的22个基因。使用SYBR Green进行实时聚合酶链反应,并报告22个靶基因中每个基因的2-Δct作为基因表达的定量指标。我们通过应用使用LASSO惩罚的惩罚线性判别分析来确定判别向量的最有效基因。所有分析均使用SPSS 18版和R.3.1.3软件中的惩罚线性判别分析(LDA)包进行。结果:使用惩罚线性判别分析导致13个不太重要的基因被剔除。考虑到对许多癌症有重要影响的22个基因的同时作用,发现转化生长因子β(TGFβ)、白细胞介素12A(IL12A)、人表皮生长因子受体2(Her2)、小鼠双微体2(MDM2)、细胞毒性T淋巴细胞相关蛋白4(CTLA-4)和白细胞介素23(IL-23)基因在用惩罚线性判别向量对膀胱癌患者进行分类时贡献最大。受试者工作特征(ROC)曲线显示,所提出的向量具有良好的性能,错误分类最少(仅3例)。我们所提出测试的曲线下面积(AUC)为96%(95%置信区间:83%-100%),敏感性、特异性、阳性和阴性预测值分别为90.5%、85.7%、90.5%和85.7%。结论:惩罚判别方法可被认为适用于膀胱癌病例的分类和重要生物标志物的寻找。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f863/5555561/c84ca20612b7/APJCP-18-1453-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验