Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA.
Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA, 91125, USA.
Adv Mater. 2017 Aug;29(31). doi: 10.1002/adma.201701044. Epub 2017 Jun 14.
A plasmonic metasurface with an electrically tunable optical response that operates at strikingly low modulation voltages is experimentally demonstrated. The fabricated metasurface shows up to 30% relative change in reflectance in the visible spectral range upon application of 5 mV and 78% absolute change in reflectance upon application of 100 mV of bias. The designed metasurface consists of nanostructured silver and indium tin oxide (ITO) electrodes which are separated by 5 nm thick alumina. The millivolt-scale optical modulation is attributed to a new modulation mechanism, in which transport of silver ions through alumina dielectric leads to bias-induced nucleation and growth of silver nanoparticles in the ITO counter-electrode, altering the optical extinction response. This transport mechanism, which occurs at applied electric fields of 1 mV nm , provides a new approach to use of ionic transport for electrical control over light-matter interactions.
实验演示了一种具有电可调谐光学响应的等离子体超表面,其工作电压低得惊人。所制造的超表面在施加 5 mV 时,在可见光谱范围内的反射率相对变化高达 30%,而在施加 100 mV 偏压时,反射率的绝对变化高达 78%。设计的超表面由纳米结构的银和氧化铟锡(ITO)电极组成,它们之间由 5nm 厚的氧化铝隔开。毫伏级的光学调制归因于一种新的调制机制,其中银离子通过氧化铝电介质的传输导致在 ITO 对电极中形成银纳米颗粒的偏压诱导成核和生长,从而改变光消光响应。这种在 1mVnm 的外加电场下发生的传输机制为利用离子输运来实现对光物质相互作用的电控制提供了一种新方法。