Batzir Nurit Assia, Tovin Adi, Hendel Ayal
The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel.
Pediatr Endocrinol Rev. 2017 Jun;14(4):353-363. doi: 10.17458/per.vol14.2017.BTH.Therapeu.
Genome editing with engineered nucleases is a rapidly growing field thanks to transformative technologies that allow researchers to precisely alter genomes for numerous applications including basic research, biotechnology, and human gene therapy. The genome editing process relies on creating a site-specific DNA double-strand break (DSB) by engineered nucleases and then allowing the cell's repair machinery to repair the break such that precise changes are made to the DNA sequence. The recent development of CRISPR-Cas systems as easily accessible and programmable tools for genome editing accelerates the progress towards using genome editing as a new approach to human therapeutics. Here we review how genome editing using engineered nucleases works and how using different genome editing outcomes can be used as a tool set for treating human diseases. We then review the major challenges of therapeutic genome editing and we discuss how its potential enhancement through CRISPR guide RNA and Cas9 protein modifications could resolve some of these challenges.
由于变革性技术的出现,利用工程核酸酶进行基因组编辑是一个快速发展的领域。这些技术使研究人员能够精确改变基因组,以用于众多应用,包括基础研究、生物技术和人类基因治疗。基因组编辑过程依赖于通过工程核酸酶产生位点特异性DNA双链断裂(DSB),然后让细胞的修复机制修复断裂,从而对DNA序列进行精确改变。CRISPR-Cas系统作为易于获取且可编程的基因组编辑工具的最新发展,加速了将基因组编辑用作人类治疗新方法的进程。在这里,我们回顾了使用工程核酸酶进行基因组编辑的工作原理,以及如何将不同的基因组编辑结果用作治疗人类疾病的工具集。然后,我们回顾了治疗性基因组编辑的主要挑战,并讨论了通过CRISPR引导RNA和Cas9蛋白修饰对其进行潜在增强如何能够解决其中一些挑战。