Shi Weiwei, Gong Yihong, Tao Xiaoyu, Wang Jinjun, Zheng Nanning
IEEE Trans Neural Netw Learn Syst. 2018 Jul;29(7):2872-2885. doi: 10.1109/TNNLS.2017.2705682. Epub 2017 Jun 9.
We propose a novel method for improving performance accuracies of convolutional neural network (CNN) without the need to increase the network complexity. We accomplish the goal by applying the proposed Min-Max objective to a layer below the output layer of a CNN model in the course of training. The Min-Max objective explicitly ensures that the feature maps learned by a CNN model have the minimum within-manifold distance for each object manifold and the maximum between-manifold distances among different object manifolds. The Min-Max objective is general and able to be applied to different CNNs with insignificant increases in computation cost. Moreover, an incremental minibatch training procedure is also proposed in conjunction with the Min-Max objective to enable the handling of large-scale training data. Comprehensive experimental evaluations on several benchmark data sets with both the image classification and face verification tasks reveal that employing the proposed Min-Max objective in the training process can remarkably improve performance accuracies of a CNN model in comparison with the same model trained without using this objective.
我们提出了一种无需增加网络复杂度就能提高卷积神经网络(CNN)性能准确率的新方法。我们通过在训练过程中将所提出的最小-最大目标应用于CNN模型输出层以下的一层来实现这一目标。最小-最大目标明确确保CNN模型学习到的特征图对于每个对象流形具有最小的流形内距离,并且在不同对象流形之间具有最大的流形间距离。最小-最大目标具有通用性,能够应用于不同的CNN,且计算成本增加不显著。此外,还结合最小-最大目标提出了一种增量小批量训练过程,以处理大规模训练数据。对几个具有图像分类和面部验证任务的基准数据集进行的综合实验评估表明,与未使用该目标进行训练的相同模型相比,在训练过程中采用所提出的最小-最大目标可以显著提高CNN模型的性能准确率。