Suppr超能文献

基于决策级融合的深度 C2D-CNN 模型的鲁棒人脸识别

Robust Face Recognition Using the Deep C2D-CNN Model Based on Decision-Level Fusion.

机构信息

School of Electronic and Information, Yangtze University, Jingzhou 434023, China.

National Demonstration Center for Experimental Electrical and Electronic Education, Yangtze University, Jingzhou 434023, China.

出版信息

Sensors (Basel). 2018 Jun 28;18(7):2080. doi: 10.3390/s18072080.

Abstract

Given that facial features contain a wide range of identification information and cannot be completely represented by a single feature, the fusion of multiple features is particularly significant for achieving a robust face recognition performance, especially when there is a big difference between the test sets and the training sets. This has been proven in both traditional and deep learning approaches. In this work, we proposed a novel method named C2D-CNN (color 2-dimensional principal component analysis (2DPCA)-convolutional neural network). C2D-CNN combines the features learnt from the original pixels with the image representation learnt by CNN, and then makes decision-level fusion, which can significantly improve the performance of face recognition. Furthermore, a new CNN model is proposed: firstly, we introduce a normalization layer in CNN to speed up the network convergence and shorten the training time. Secondly, the layered activation function is introduced to make the activation function adaptive to the normalized data. Finally, probabilistic max-pooling is applied so that the feature information is preserved to the maximum extent while maintaining feature invariance. Experimental results show that compared with the state-of-the-art method, our method shows better performance and solves low recognition accuracy caused by the difference between test and training datasets.

摘要

由于面部特征包含广泛的识别信息,不能仅由单个特征完全表示,因此,融合多个特征对于实现稳健的人脸识别性能尤为重要,尤其是在测试集和训练集之间存在较大差异的情况下。这在传统和深度学习方法中都得到了证明。在这项工作中,我们提出了一种名为 C2D-CNN(颜色二维主成分分析(2DPCA)-卷积神经网络)的新方法。C2D-CNN 结合了从原始像素中学习到的特征和通过 CNN 学习到的图像表示,然后进行决策级融合,这可以显著提高人脸识别性能。此外,还提出了一种新的 CNN 模型:首先,在 CNN 中引入归一化层,以加快网络收敛速度并缩短训练时间。其次,引入分层激活函数,使激活函数自适应于归一化数据。最后,应用概率最大池化,在保持特征不变性的同时,最大限度地保留特征信息。实验结果表明,与最先进的方法相比,我们的方法表现出更好的性能,并解决了由于测试集和训练集之间的差异导致的识别精度低的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1097/6068932/63aa75ee01d4/sensors-18-02080-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验