Suppr超能文献

SkpA 在发育过程中抑制突触末端生长,并在损伤后促进轴突变性。

SkpA restrains synaptic terminal growth during development and promotes axonal degeneration following injury.

机构信息

Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri 63110, and.

Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112.

出版信息

J Neurosci. 2014 Jun 18;34(25):8398-410. doi: 10.1523/JNEUROSCI.4715-13.2014.

Abstract

The Wallenda (Wnd)/dual leucine zipper kinase (DLK)-Jnk pathway is an evolutionarily conserved MAPK signaling pathway that functions during neuronal development and following axonal injury. Improper pathway activation causes defects in axonal guidance and synaptic growth, whereas loss-of-function mutations in pathway components impairs axonal regeneration and degeneration after injury. Regulation of this pathway is in part through the E3 ubiquitin ligase Highwire (Hiw), which targets Wnd/DLK for degradation to limit MAPK signaling. To explore mechanisms controlling Wnd/DLK signaling, we performed a large-scale genetic screen in Drosophila to identify negative regulators of the pathway. Here we describe the identification and characterization of SkpA, a core component of SCF E3 ubiquitin ligases. Mutants in SkpA display synaptic overgrowth and an increase in Jnk signaling, similar to hiw mutants. The combination of hypomorphic alleles of SkpA and hiw leads to enhanced synaptic growth. Mutants in the Wnd-Jnk pathway suppress the overgrowth of SkpA mutants demonstrating that the synaptic overgrowth is due to increased Jnk signaling. These findings support the model that SkpA and the E3 ligase Hiw function as part of an SCF-like complex that attenuates Wnd/DLK signaling. In addition, SkpA, like Hiw, is required for synaptic and axonal responses to injury. Synapses in SkpA mutants are more stable following genetic or traumatic axonal injury, and axon loss is delayed in SkpA mutants after nerve crush. As in highwire mutants, this axonal protection requires Nmnat. Hence, SkpA is a novel negative regulator of the Wnd-Jnk pathway that functions with Hiw to regulate both synaptic development and axonal maintenance.

摘要

华尔登(Wnd)/双亮氨酸拉链激酶(DLK)-Jnk 途径是一种进化上保守的 MAPK 信号通路,在神经元发育和轴突损伤后发挥作用。途径激活不当会导致轴突导向和突触生长缺陷,而途径成分的功能丧失突变会损害损伤后的轴突再生和退化。该途径的调节部分是通过 E3 泛素连接酶 Highwire(Hiw),它将 Wnd/DLK 作为靶标进行降解,以限制 MAPK 信号。为了探索控制 Wnd/DLK 信号的机制,我们在果蝇中进行了大规模的遗传筛选,以鉴定该途径的负调节剂。在这里,我们描述了 SkpA 的鉴定和特征,SkpA 是 SCF E3 泛素连接酶的核心成分。SkpA 突变体显示突触过度生长和 Jnk 信号增加,类似于 hiw 突变体。SkpA 的功能丧失等位基因与 hiw 的组合导致突触过度生长。Wnd-Jnk 途径的突变体抑制 SkpA 突变体的过度生长,表明突触过度生长是由于 Jnk 信号增加所致。这些发现支持 SkpA 和 E3 连接酶 Hiw 作为衰减 Wnd/DLK 信号的 SCF 样复合物的一部分发挥作用的模型。此外,SkpA 与 Hiw 一样,是突触和轴突对损伤的反应所必需的。SkpA 突变体中的突触在遗传或创伤性轴突损伤后更稳定,并且在神经挤压后 SkpA 突变体中的轴突丢失延迟。与 hiw 突变体一样,这种轴突保护需要 Nmnat。因此,SkpA 是 Wnd-Jnk 途径的一种新型负调节剂,与 Hiw 一起调节突触发育和轴突维持。

相似文献

引用本文的文献

3
Insights into nervous system repair from the fruit fly.从果蝇研究中获得的对神经系统修复的见解。
Neuronal Signal. 2022 Apr 13;6(1):NS20210051. doi: 10.1042/NS20210051. eCollection 2022 Apr.
9
Programmed axon degeneration: from mouse to mechanism to medicine.程序性轴突退变:从鼠到人再到药物。
Nat Rev Neurosci. 2020 Apr;21(4):183-196. doi: 10.1038/s41583-020-0269-3. Epub 2020 Mar 9.
10
Bidirectional Regulation of Sleep and Synapse Pruning after Neural Injury.神经损伤后睡眠和突触修剪的双向调控。
Curr Biol. 2020 Mar 23;30(6):1063-1076.e3. doi: 10.1016/j.cub.2019.12.065. Epub 2020 Mar 5.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验