School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology , Gwangju 61005, South Korea.
Faculty of Applied Chemical Engineering, Chonnam National University , Gwangju 61186, South Korea.
ACS Appl Mater Interfaces. 2017 Jul 12;9(27):22398-22407. doi: 10.1021/acsami.7b03299. Epub 2017 Jun 28.
The low volumetric energy density of reduced graphene oxide (rGO)-based electrodes limits its application in commercial electrochemical energy storage devices that require high-performance energy storage capacities in small volumes. The volumetric energy density of rGO-based electrode materials is very low due to their low packing density. A supercapacitor with enhanced packing density and high volumetric energy density is fabricated using doped rGO scrolls (GFNSs) as the electrode material. The restacking of rGO sheets is successfully controlled through synthesizing the doped scroll structures while increasing the packing density. The fabricated cell exhibits an ultrahigh volumetric energy density of 49.66 Wh/L with excellent cycling stability (>10 000 cycles). This unique design strategy for the electrode material has significant potential for the future supercapacitors with high volumetric energy densities.
基于还原氧化石墨烯(rGO)的电极的体积能量密度低,限制了其在需要在小体积中具有高储能性能的商业电化学储能设备中的应用。由于 rGO 基电极材料的堆积密度低,因此其体积能量密度非常低。通过使用掺杂的 rGO 卷(GFNSs)作为电极材料来制造具有增强堆积密度和高体积能量密度的超级电容器。通过合成掺杂的卷结构来成功控制 rGO 片的堆叠,同时增加堆积密度。所制造的电池具有超高的体积能量密度 49.66 Wh/L,具有出色的循环稳定性(>10000 次循环)。这种独特的电极材料设计策略对于具有高体积能量密度的未来超级电容器具有重要的应用潜力。