Suppr超能文献

基于图像的机器学习用于鉴定巨噬细胞亚群。

Image based Machine Learning for identification of macrophage subsets.

机构信息

Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.

Department of Biology, University of Garmian, Kalar, Kurdistan, Iraq.

出版信息

Sci Rep. 2017 Jun 14;7(1):3521. doi: 10.1038/s41598-017-03780-z.

Abstract

Macrophages play a crucial rule in orchestrating immune responses against pathogens and foreign materials. Macrophages have remarkable plasticity in response to environmental cues and are able to acquire a spectrum of activation status, best exemplified by pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes at the two ends of the spectrum. Characterisation of M1 and M2 subsets is usually carried out by quantification of multiple cell surface markers, transcription factors and cytokine profiles. These approaches are time-consuming, require large numbers of cells and are resource intensive. In this study, we used machine learning algorithms to develop a simple and fast imaging-based approach that enables automated identification of different macrophage functional phenotypes using their cell size and morphology. Fluorescent microscopy was used to assess cell morphology of different cell types which were stained for nucleus and actin distribution using DAPI and phalloidin respectively. By only analysing their morphology we were able to identify M1 and M2 phenotypes effectively and could distinguish them from naïve macrophages and monocytes with an average accuracy of 90%. Thus we suggest high-content and automated image analysis can be used for fast phenotyping of functionally diverse cell populations with reasonable accuracy and without the need for using multiple markers.

摘要

巨噬细胞在调节针对病原体和异物的免疫反应方面发挥着至关重要的作用。巨噬细胞对环境线索具有显著的可塑性,并能够获得一系列激活状态,以谱两端的促炎(M1)和抗炎(M2)表型为最佳代表。M1 和 M2 亚群的特征通常通过定量多种细胞表面标志物、转录因子和细胞因子谱来进行。这些方法耗时耗力,需要大量的细胞,并且资源密集。在这项研究中,我们使用机器学习算法开发了一种简单快速的基于成像的方法,该方法能够使用其细胞大小和形态自动识别不同的巨噬细胞功能表型。荧光显微镜用于评估不同细胞类型的细胞形态,分别使用 DAPI 和鬼笔环肽对细胞核和肌动蛋白分布进行染色。通过仅分析它们的形态,我们能够有效地识别 M1 和 M2 表型,并能够将其与幼稚巨噬细胞和单核细胞区分开来,平均准确率为 90%。因此,我们建议高内涵和自动化的图像分析可以用于快速表型分析具有合理准确性的功能多样化细胞群体,而无需使用多种标记物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/609b/5471192/be285a41aa8e/41598_2017_3780_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验