Izzo Richard L, O'Hara Ryan P, Iyer Vijay, Hansen Rose, Meess Karen M, Nagesh S V Setlur, Rudin Stephen, Siddiqui Adnan H, Springer Michael, Ionita Ciprian N
The Jacobs Institute, 875 Ellicott Street, 5 Floor, Buffalo, NY.
Biomedical Engineering, University at Buffalo, 332 Bonner Hall, Buffalo, NY.
Proc SPIE Int Soc Opt Eng. 2016 Feb 27;9789. doi: 10.1117/12.2216952. Epub 2016 Apr 5.
UNLABELLED: 3D printing an anatomically accurate, functional flow loop phantom of a patient's cardiac vasculature was used to assist in the surgical planning of one of the first native transcatheter mitral valve replacement (TMVR) procedures. CTA scans were acquired from a patient about to undergo the first minimally-invasive native TMVR procedure at the Gates Vascular Institute in Buffalo, NY. A python scripting library, the Vascular Modeling Toolkit (VMTK), was used to segment the 3D geometry of the patient's cardiac chambers and mitral valve with severe stenosis, calcific in nature. A stereolithographic (STL) mesh was generated and AutoDesk Meshmixer was used to transform the vascular surface into a functioning closed flow loop. A Stratasys Objet 500 Connex3 multi-material printer was used to fabricate the phantom with distinguishable material features of the vasculature and calcified valve. The interventional team performed a mock procedure on the phantom, embedding valve cages in the model and imaging the phantom with a Toshiba Infinix INFX-8000V 5-axis C-arm bi-Plane angiography system. RESULTS: After performing the mock-procedure on the cardiac phantom, the cardiologists optimized their transapical surgical approach. The mitral valve stenosis and calcification were clearly visible. The phantom was used to inform the sizing of the valve to be implanted. CONCLUSION: With advances in image processing and 3D printing technology, it is possible to create realistic patient-specific phantoms which can act as a guide for the interventional team. Using 3D printed phantoms as a valve sizing method shows potential as a more informative technique than typical CTA reconstruction alone.
未标注:通过3D打印患者心脏血管系统的解剖学精确、功能性血流环模型,辅助了首例经导管二尖瓣置换术(TMVR)的手术规划。CTA扫描取自纽约州布法罗市盖茨血管研究所一名即将接受首例微创经导管二尖瓣置换术的患者。使用Python脚本库——血管建模工具包(VMTK),对患者严重狭窄、钙化的心脏腔室和二尖瓣的三维几何结构进行分割。生成了立体光刻(STL)网格,并使用AutoDesk Meshmixer将血管表面转化为功能性闭合血流环。使用Stratasys Objet 500 Connex3多材料打印机制作具有血管系统和钙化瓣膜可区分材料特征的模型。介入团队在模型上进行了模拟手术,将瓣膜笼嵌入模型,并使用东芝Infinix INFX - 8000V 5轴C臂双平面血管造影系统对模型进行成像。 结果:在心脏模型上进行模拟手术后,心脏病专家优化了经心尖手术入路。二尖瓣狭窄和钙化清晰可见。该模型用于确定待植入瓣膜的尺寸。 结论:随着图像处理和3D打印技术的进步,有可能创建逼真的患者特异性模型,作为介入团队的指导。使用3D打印模型作为瓣膜尺寸确定方法,显示出比单独的典型CTA重建更具信息性的技术潜力。
Proc SPIE Int Soc Opt Eng. 2016-2-27
Proc SPIE Int Soc Opt Eng. 2017-2-11
Catheter Cardiovasc Interv. 2018-1-23
Proc SPIE Int Soc Opt Eng. 2017-2-11
Catheter Cardiovasc Interv. 2018-8-1
Proc SPIE Int Soc Opt Eng. 2017-2-11
Curr Treat Options Cardiovasc Med. 2019-6-17
Ann Biomed Eng. 2017-2
3D Print Addit Manuf. 2020-12-1
J Med Imaging (Bellingham). 2022-2
Int J Environ Res Public Health. 2022-3-11
Proc SPIE Int Soc Opt Eng. 2021-2
Adv Sci (Weinh). 2021-9
Proc SPIE Int Soc Opt Eng. 2015-2-21
Rev Esp Cardiol (Engl Ed). 2015-12
Circ Cardiovasc Imaging. 2015-10
JACC Cardiovasc Interv. 2015-8-24
Catheter Cardiovasc Interv. 2016-6
J Thorac Cardiovasc Surg. 2015-1-8
AJNR Am J Neuroradiol. 2015-3
Proc SPIE Int Soc Opt Eng. 2014-3-13
Proc SPIE Int Soc Opt Eng. 2014-3-13