Mohr Thomas, Haudek-Prinz Verena, Slany Astrid, Grillari Johannes, Micksche Michael, Gerner Christopher
Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
ScienceConsult - DI Thomas Mohr KG, Guntramsdorf, Austria.
PLoS One. 2017 Jun 15;12(6):e0179065. doi: 10.1371/journal.pone.0179065. eCollection 2017.
Endothelial cells represent major effectors in inflammation and angiogenesis, processes that drive a multitude of pathological states such as atherosclerosis and cancer. Both inflammation and angiogenesis are interconnected with each other in the sense that many pro-inflammatory proteins possess proangiogenic properties and vice versa. To elucidate this interplay further, we present a comparative proteome study of inflammatory and angiogenic activated endothelial cells. HUVEC were stimulated with interleukin 1-β and VEGF, respectively. Cultured primary cells were fractionated into secreted, cytoplasmic and nuclear protein fractions and processed for subsequent LC-MS/MS analysis. Obtained protein profiles were filtered for fraction-specific proteins to address potential cross fractional contamination, subjected to comparative computational biology analysis (GO-Term enrichment analysis, weighted gene co-expression analysis) and compared to published mRNA profiles of IL-1β respectively VEGF stimulated HUVEC. GO Term enrichment analysis and comparative pathway analysis revealed features such as NOD and NfkB signaling for inflammatory activated HUVEC and VEGF and ErB signaling for VEGF-activated HUVEC with potential crosstalk via map kinases MAP2K2. Weighted protein co-expression network analysis revealed several potential hub genes so far not associated with driver function in inflammation or angiogenesis such as HSPG2, ANXA3, and GPI. "Classical" inflammation or angiogenesis markers such as IL6, CXCL8 or CST1 were found in a less central position within the co-expression networks. In conclusion, this study reports a framework for the computational biology based analysis of proteomics data applied to cytoplasmic, nucleic and extracellular fractions of quiescent, inflammatory and angiogenic activated HUVEC. Novel potential hub genes relevant for these processes were successfully identified.
内皮细胞是炎症和血管生成中的主要效应细胞,而炎症和血管生成是引发多种病理状态(如动脉粥样硬化和癌症)的过程。炎症和血管生成相互关联,因为许多促炎蛋白具有促血管生成特性,反之亦然。为了进一步阐明这种相互作用,我们对炎症激活和血管生成激活的内皮细胞进行了比较蛋白质组学研究。分别用白细胞介素1-β和血管内皮生长因子(VEGF)刺激人脐静脉内皮细胞(HUVEC)。将培养的原代细胞分离为分泌蛋白、细胞质蛋白和核蛋白组分,并进行后续的液相色谱-串联质谱(LC-MS/MS)分析。对获得的蛋白质谱进行过滤,以筛选出各组分特异性蛋白,以解决潜在的交叉污染问题,然后进行比较计算生物学分析(基因本体论(GO)术语富集分析、加权基因共表达分析),并与已发表的白细胞介素1-β或血管内皮生长因子刺激的人脐静脉内皮细胞的mRNA谱进行比较。GO术语富集分析和比较通路分析揭示了一些特征,如炎症激活的人脐静脉内皮细胞的核苷酸结合寡聚化结构域(NOD)和核因子κB(NfkB)信号通路,以及血管内皮生长因子激活的人脐静脉内皮细胞的血管内皮生长因子和表皮生长因子受体(ErB)信号通路,它们可能通过丝裂原活化蛋白激酶MAP2K2发生相互作用。加权蛋白质共表达网络分析揭示了几个迄今为止与炎症或血管生成中的驱动功能无关的潜在枢纽基因,如硫酸乙酰肝素蛋白聚糖2(HSPG2)、膜联蛋白A3(ANXA3)和糖基磷脂酰肌醇(GPI)。“经典”的炎症或血管生成标志物,如白细胞介素6(IL6)、CXC趋化因子配体8(CXCL8)或胱抑素C1(CST1),在共表达网络中处于不太核心的位置。总之,本研究报告了一个基于计算生物学的蛋白质组学数据分析框架,该分析应用于静止、炎症和血管生成激活的人脐静脉内皮细胞的细胞质、细胞核和细胞外组分。成功鉴定了与这些过程相关的新的潜在枢纽基因。