Suppr超能文献

在临床环境中使用先进的 MRS 方法可提高定位、光谱质量和可重复性。

Improved localization, spectral quality, and repeatability with advanced MRS methodology in the clinical setting.

机构信息

Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA.

Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.

出版信息

Magn Reson Med. 2018 Mar;79(3):1241-1250. doi: 10.1002/mrm.26788. Epub 2017 Jun 15.

Abstract

PURPOSE

To investigate the utility of an advanced magnetic resonance spectroscopy (MRS) protocol in the clinical setting, and to compare the localization accuracy, spectral quality, and quantification repeatability between this advanced and the conventional vendor-provided MRS protocol on a clinical 3T platform.

METHODS

Proton spectra were measured from the posterior cingulate cortices in 30 healthy elderly subjects by clinical MR technologists using a vendor-provided (point resolved spectroscopy with advanced 3D gradient-echo B shimming) and an advanced (semi-LASER with FAST(EST)MAP shimming) protocol, in random order. Spectra were quantified with LCModel using standard pipelines for the clinical and research settings, respectively.

RESULTS

The advanced protocol outperformed the vendor-provided protocol in localization accuracy (chemical-shift-displacement error: 2.0%/ppm, semi-LASER versus 11.6%/ppm, point resolved spectroscopy), spectral quality (water linewidth: 6.1 ± 1.8 Hz, FAST(EST)MAP versus 10.5 ± 3.7 Hz, 3D gradient echo; P < 7e-6; residual water: 0.08 ± 0.12%, VAPOR versus 0.45 ± 0.50%, WET; P < 2e-5) and within-session repeatability of metabolite concentrations, particularly of low signal-to-noise ratio data with two to eight averages (test-retest coefficients of variance of metabolite concentrations, P < 0.01). Concentrations of J-coupled metabolites such as γ-aminobutyric acid and glutamate were biased when using the default pipeline with simulated macromolecules.

CONCLUSIONS

The quality of MRS data can be improved using advanced acquisition and analysis protocols on standard 3T hardware in the clinical setting, which can facilitate robust applications in central nervous system diseases. Magn Reson Med 79:1241-1250, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

摘要

目的

研究一种先进的磁共振波谱(MRS)协议在临床环境中的应用,并比较该先进协议与临床 3T 平台上提供的传统供应商协议在定位准确性、光谱质量和定量可重复性方面的差异。

方法

由临床磁共振技术人员使用供应商提供的(具有先进 3D 梯度回波 B 匀场的点分辨波谱)和先进的(具有 FAST(EST)MAP 匀场的半 LASER)协议,以随机顺序从 30 名健康老年人的后扣带回皮质中测量质子波谱。分别使用针对临床和研究设置的标准管道对波谱进行 LCModel 定量。

结果

在定位准确性方面(化学位移位移误差:2.0%/ppm,半 LASER 与 11.6%/ppm,点分辨波谱)、光谱质量(水线宽:6.1±1.8Hz,FAST(EST)MAP 与 10.5±3.7Hz,3D 梯度回波;P<7e-6;残留水:0.08±0.12%,VAPOR 与 0.45±0.50%,WET;P<2e-5)以及代谢物浓度的单次检测重复性方面,先进协议均优于供应商提供的协议,特别是在低信噪比数据(代谢物浓度的测试-再测试系数方差,P<0.01)有 2 到 8 次平均的情况下。当使用具有模拟大分子的默认管道时,γ-氨基丁酸和谷氨酸等 J 耦合代谢物的浓度会产生偏差。

结论

在临床环境中,使用标准 3T 硬件上的先进采集和分析协议可以改善 MRS 数据的质量,这有助于在中枢神经系统疾病中实现稳健的应用。磁共振医学 79:1241-1250,2018. © 2017 国际磁共振学会。

相似文献

1
Improved localization, spectral quality, and repeatability with advanced MRS methodology in the clinical setting.
Magn Reson Med. 2018 Mar;79(3):1241-1250. doi: 10.1002/mrm.26788. Epub 2017 Jun 15.
2
Plug-and-play advanced magnetic resonance spectroscopy.
Magn Reson Med. 2022 Jun;87(6):2613-2620. doi: 10.1002/mrm.29164. Epub 2022 Jan 28.
3
Across-vendor standardization of semi-LASER for single-voxel MRS at 3T.
NMR Biomed. 2021 May;34(5):e4218. doi: 10.1002/nbm.4218. Epub 2019 Dec 18.
5
Map-based B shimming for single voxel brain spectroscopy at 7T.
NMR Biomed. 2023 Dec;36(12):e5021. doi: 10.1002/nbm.5021. Epub 2023 Aug 16.
7
Feasibility and reproducibility of neurochemical profile quantification in the human hippocampus at 3 T.
NMR Biomed. 2015 Jun;28(6):685-93. doi: 10.1002/nbm.3309. Epub 2015 Apr 22.
8
Test-retest reproducibility of neurochemical profiles with short-echo, single-voxel MR spectroscopy at 3T and 7T.
Magn Reson Med. 2016 Oct;76(4):1083-91. doi: 10.1002/mrm.26022. Epub 2015 Oct 26.
10
Parameter optimization for reproducible cardiac H-MR spectroscopy at 3 Tesla.
J Magn Reson Imaging. 2016 Nov;44(5):1151-1158. doi: 10.1002/jmri.25254. Epub 2016 Mar 26.

引用本文的文献

1
Functional magnetic resonance spectroscopy of prolonged motor activation using conventional and spectral GLM analyses.
Imaging Neurosci (Camb). 2025 Jan 24;3. doi: 10.1162/imag_a_00452. eCollection 2025.
2
Anterior insular cortex glutamate-glutamine (Glx) levels predict general psychopathology via heightened error sensitivity.
Front Neurosci. 2025 Jul 16;19:1592015. doi: 10.3389/fnins.2025.1592015. eCollection 2025.
3
Test-retest reliability of multi-metabolite edited MRS at 3T using PRESS and sLASER.
bioRxiv. 2025 Jun 11:2025.06.07.657685. doi: 10.1101/2025.06.07.657685.
5
The periaqueductal gray in chronic low back pain: dysregulated neurotransmitters and function.
Pain. 2025 May 15;166(7):1690-1705. doi: 10.1097/j.pain.0000000000003617.
6
Lack of association between pretreatment glutamate/GABA and major depressive disorder treatment response.
Transl Psychiatry. 2025 Mar 2;15(1):71. doi: 10.1038/s41398-025-03292-9.
7
Examination of methods to separate overlapping metabolites at 7T.
Magn Reson Med. 2025 Feb;93(2):470-480. doi: 10.1002/mrm.30293. Epub 2024 Sep 30.
9
B-insensitive image navigators for prospective motion-corrected MRS with localized second-order shimming.
Magn Reson Med. 2024 Oct;92(4):1338-1347. doi: 10.1002/mrm.30151. Epub 2024 May 5.
10
Fast high-resolution prospective motion correction for single-voxel spectroscopy.
Magn Reson Med. 2024 Apr;91(4):1301-1313. doi: 10.1002/mrm.29950. Epub 2023 Dec 12.

本文引用的文献

1
Vespa: Integrated applications for RF pulse design, spectral simulation and MRS data analysis.
Magn Reson Med. 2023 Sep;90(3):823-838. doi: 10.1002/mrm.29686. Epub 2023 May 15.
3
Myo-inositol changes precede amyloid pathology and relate to APOE genotype in Alzheimer disease.
Neurology. 2016 May 10;86(19):1754-61. doi: 10.1212/WNL.0000000000002672. Epub 2016 Apr 15.
4
Test-retest reproducibility of neurochemical profiles with short-echo, single-voxel MR spectroscopy at 3T and 7T.
Magn Reson Med. 2016 Oct;76(4):1083-91. doi: 10.1002/mrm.26022. Epub 2015 Oct 26.
5
Feasibility and reproducibility of neurochemical profile quantification in the human hippocampus at 3 T.
NMR Biomed. 2015 Jun;28(6):685-93. doi: 10.1002/nbm.3309. Epub 2015 Apr 22.
6
Multi-center reproducibility of neurochemical profiles in the human brain at 7 T.
NMR Biomed. 2015 Mar;28(3):306-16. doi: 10.1002/nbm.3252. Epub 2015 Jan 8.
7
Neurochemical and BOLD responses during neuronal activation measured in the human visual cortex at 7 Tesla.
J Cereb Blood Flow Metab. 2015 Mar 31;35(4):601-10. doi: 10.1038/jcbfm.2014.233.
8
Two-site reproducibility of cerebellar and brainstem neurochemical profiles with short-echo, single-voxel MRS at 3T.
Magn Reson Med. 2015 May;73(5):1718-25. doi: 10.1002/mrm.25295. Epub 2014 Jun 19.
9
Clinical proton MR spectroscopy in central nervous system disorders.
Radiology. 2014 Mar;270(3):658-79. doi: 10.1148/radiol.13130531.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验