Suppr超能文献

转录组分析调控裂殖壶菌中脂类组分迁移和脂肪酸生物合成

Transcriptomic Analysis of the Regulation of Lipid Fraction Migration and Fatty Acid Biosynthesis in Schizochytrium sp.

机构信息

Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.

出版信息

Sci Rep. 2017 Jun 15;7(1):3562. doi: 10.1038/s41598-017-03382-9.

Abstract

Schizochytrium sp. is the main source of docosahexaenoic acid-rich oil, which is widely used in food additive and pharmaceutical industry. In this study, using RNA-seq, comparative transcriptomic analyses were performed at four stages of DHA fermentation by Schizochytrium sp to get potential genes related to cell transition from cell growth to lipid accumulation and then to lipid turnover. 1406, 385, 1384 differently expressed genes were identified by comparisons in pairs of S2 vs S1, S3 vs S2 and S4 vs S3. Functional analysis revealed that binding and single-organism process might be involve in the cell transition from cell growth to lipid accumulation while oxidation-reduction process played an important role in the transition from lipid accumulation to lipid turnover. pfaC in the PKS pathway showed higher sensitivity to the environmental change, which might be the key regulator for enhancing PUFA biosynthesis in the future. Some other genes in signal transduction and cell transport were revealed to be related to lipid turnover, which would enrich the current knowledge regarding lipid metabolism and help to enhance the DHA production and enrich different lipid fractions by Schizochytrium in the future.

摘要

裂殖壶菌是富含二十二碳六烯酸(DHA)的油脂的主要来源,广泛应用于食品添加剂和制药工业。本研究采用 RNA-seq 技术,对裂殖壶菌发酵生产 DHA 的四个阶段进行了比较转录组分析,以获得与细胞从生长到脂质积累再到脂质周转的转变相关的潜在基因。通过 S2 与 S1、S3 与 S2 和 S4 与 S3 两两比较,鉴定出 1406、385 和 1384 个差异表达基因。功能分析表明,结合和单个生物过程可能参与细胞从生长到脂质积累的转变,而氧化还原过程在脂质积累到脂质周转的转变中起着重要作用。多酮合酶(PKS)途径中的 pfaC 对环境变化表现出更高的敏感性,它可能是未来增强多不饱和脂肪酸(PUFA)生物合成的关键调节剂。一些其他参与信号转导和细胞运输的基因被揭示与脂质周转有关,这将丰富当前关于脂质代谢的知识,并有助于未来通过裂殖壶菌提高 DHA 产量和丰富不同的脂质成分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53de/5472558/c1e144046224/41598_2017_3382_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验