Suppr超能文献

活性氧代谢及其对微藻脂类生物合成的影响。

The Metabolism of Reactive Oxygen Species and Their Effects on Lipid Biosynthesis of Microalgae.

机构信息

Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.

College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.

出版信息

Int J Mol Sci. 2023 Jul 3;24(13):11041. doi: 10.3390/ijms241311041.

Abstract

Microalgae have outstanding abilities to transform carbon dioxide (CO) into useful lipids, which makes them extremely promising as renewable sources for manufacturing beneficial compounds. However, during this process, reactive oxygen species (ROS) can be inevitably formed via electron transfers in basal metabolisms. While the excessive accumulation of ROS can have negative effects, it has been supported that proper accumulation of ROS is essential to these organisms. Recent studies have shown that ROS increases are closely related to total lipid in microalgae under stress conditions. However, the exact mechanism behind this phenomenon remains largely unknown. Therefore, this paper aims to introduce the production and elimination of ROS in microalgae. The roles of ROS in three different signaling pathways for lipid biosynthesis are then reviewed: receptor proteins and phosphatases, as well as redox-sensitive transcription factors. Moreover, the strategies and applications of ROS-induced lipid biosynthesis in microalgae are summarized. Finally, future perspectives in this emerging field are also mentioned, appealing to more researchers to further explore the relative mechanisms. This may contribute to improving lipid accumulation in microalgae.

摘要

微藻具有将二氧化碳(CO)转化为有用脂质的卓越能力,这使它们成为制造有益化合物的可再生资源极具潜力。然而,在这个过程中,通过基础代谢中的电子传递,不可避免地会形成活性氧(ROS)。虽然过量的 ROS 积累会产生负面影响,但已有研究表明,适当的 ROS 积累对这些生物是必不可少的。最近的研究表明,在胁迫条件下,ROS 的增加与微藻中的总脂质密切相关。然而,这种现象背后的确切机制在很大程度上仍然未知。因此,本文旨在介绍微藻中 ROS 的产生和消除。然后综述了 ROS 在三种不同脂质生物合成信号通路中的作用:受体蛋白和磷酸酶,以及氧化还原敏感转录因子。此外,还总结了 ROS 诱导的微藻中脂质生物合成的策略和应用。最后,还提到了该新兴领域的未来展望,呼吁更多的研究人员进一步探索相关机制。这可能有助于提高微藻中的脂质积累。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f1/10341767/a52e32f066b2/ijms-24-11041-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验