Bhaskar M K, Sukachev D D, Sipahigil A, Evans R E, Burek M J, Nguyen C T, Rogers L J, Siyushev P, Metsch M H, Park H, Jelezko F, Lončar M, Lukin M D
Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA.
P. N. Lebedev Physical Institute of the RAS, Leninsky Prospekt 53, Moscow 119991, Russia.
Phys Rev Lett. 2017 Jun 2;118(22):223603. doi: 10.1103/PhysRevLett.118.223603. Epub 2017 May 31.
We demonstrate a quantum nanophotonics platform based on germanium-vacancy (GeV) color centers in fiber-coupled diamond nanophotonic waveguides. We show that GeV optical transitions have a high quantum efficiency and are nearly lifetime broadened in such nanophotonic structures. These properties yield an efficient interface between waveguide photons and a single GeV center without the use of a cavity or slow-light waveguide. As a result, a single GeV center reduces waveguide transmission by 18±1% on resonance in a single pass. We use a nanophotonic interferometer to perform homodyne detection of GeV resonance fluorescence. By probing the photon statistics of the output field, we demonstrate that the GeV-waveguide system is nonlinear at the single-photon level.
我们展示了一种基于光纤耦合金刚石纳米光子波导中锗空位(GeV)色心的量子纳米光子学平台。我们表明,GeV光学跃迁具有高量子效率,并且在这种纳米光子结构中几乎是寿命展宽的。这些特性在不使用腔或慢光波导的情况下,产生了波导光子与单个GeV中心之间的有效界面。结果,单个GeV中心在单次通过时,在共振状态下使波导传输降低18±1%。我们使用纳米光子干涉仪对GeV共振荧光进行零差检测。通过探测输出场的光子统计特性,我们证明GeV-波导系统在单光子水平上是非线性的。