Koch Michael K, Hoese Michael, Bharadwaj Vibhav, Lang Johannes, Hadden John P, Ramponi Roberta, Jelezko Fedor, Eaton Shane M, Kubanek Alexander
Institute for Quantum Optics, Ulm University, UlmD-89081, Germany.
Center for Integrated Quantum Science and Technology (IQst), Ulm University, UlmD-89081, Germany.
ACS Photonics. 2022 Oct 19;9(10):3366-3373. doi: 10.1021/acsphotonics.2c00774. Epub 2022 Oct 4.
Modifying light fields at the single-photon level is a key challenge for upcoming quantum technologies and can be realized in a scalable manner through integrated quantum photonics. Laser-written diamond photonics offers 3D fabrication capabilities and large mode-field diameters matched to fiber optic technology, though limiting the cooperativity at the single-emitter level. To realize large coupling efficiencies, we combine excitation of single shallow-implanted silicon vacancy centers via high numerical aperture optics with detection assisted by laser-written type-II waveguides. We demonstrate single-emitter extinction measurements with a cooperativity of 0.0050 and a relative beta factor of 13%. The transmission of resonant photons reveals single-photon subtraction from a quasi-coherent field resulting in super-Poissonian light statistics. Our architecture enables light field engineering in an integrated design on the single quantum level although the intrinsic cooperativity is low. Laser-written structures can be fabricated in three dimensions and with a natural connectivity to optical fiber arrays.
在单光子水平上修改光场是未来量子技术面临的一项关键挑战,并且可以通过集成量子光子学以可扩展的方式实现。激光写入的金刚石光子学具有三维制造能力以及与光纤技术相匹配的大模场直径,不过在单发射体水平上限制了协同性。为了实现高耦合效率,我们将通过高数值孔径光学器件对单个浅植入硅空位中心的激发与激光写入的II型波导辅助检测相结合。我们展示了协同性为0.0050且相对β因子为13%的单发射体消光测量。共振光子的传输揭示了从准相干场中进行单光子减法,从而产生超泊松光统计。尽管固有协同性较低,但我们的架构能够在单量子水平上以集成设计实现光场工程。激光写入结构可以三维制造并且与光纤阵列具有天然的连接性。