Suppr超能文献

谷氨酸酶 C 在大脑中的过度表达会导致小鼠学习能力缺陷、突触功能障碍和神经炎症。

Glutaminase C overexpression in the brain induces learning deficits, synaptic dysfunctions, and neuroinflammation in mice.

机构信息

Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States; Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States.

Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States.

出版信息

Brain Behav Immun. 2017 Nov;66:135-145. doi: 10.1016/j.bbi.2017.06.007. Epub 2017 Jun 15.

Abstract

Glutaminolysis, a metabolic process that converts glutamine to glutamate, is particularly important for the central nervous system since glutamate is the major transmitter of excitatory synapses. Glutaminase is the mitochondrial enzyme that catalyzes the first step of glutaminolysis. Two genes encode at least four isoforms of glutaminase in humans. Gls1 gene encodes isoforms kidney-type glutaminase (KGA) and glutaminase C (GAC) through alternative splicing, whereas Gls2 gene encodes liver-type glutaminase isoforms. KGA and GAC have been associated with several neurological diseases. However, it remains unclear whether changes in their expressions can directly cause brain abnormalities. Using a transgenic approach, we generated mice that overexpressed GAC in the brain. The resulting transgenic mice had severe impairments in spatial and fear learning compared with littermate controls. The learning deficits were consistent with diminished hippocampal long-term potentiation in the hippocampal slices of the GAC transgenic mice. Furthermore, we found increases in astrocyte and microglia markers, inflammatory factors, and a decrease in synapse marker synaptophysin, suggesting neuroinflammation and synaptic changes in the GAC transgenic mouse brains. In conclusion, these findings provide the first evidence that GAC overexpression in the brain has deleterious effects on learning and synaptic integrity in vivo.

摘要

谷氨酰胺分解代谢,一种将谷氨酰胺转化为谷氨酸的代谢过程,对中枢神经系统尤为重要,因为谷氨酸是兴奋性突触的主要递质。谷氨酰胺酶是催化谷氨酰胺分解代谢第一步的线粒体酶。至少有四个基因编码人类的谷氨酰胺酶同工酶。Gls1 基因通过选择性剪接编码肾型谷氨酰胺酶(KGA)和谷氨酰胺酶 C(GAC)同工酶,而 Gls2 基因编码肝型谷氨酰胺酶同工酶。KGA 和 GAC 与多种神经疾病有关。然而,它们的表达变化是否能直接导致大脑异常仍不清楚。我们使用转基因方法,生成了大脑中过表达 GAC 的小鼠。与同窝对照相比,这些转基因小鼠在空间和恐惧学习方面存在严重障碍。学习缺陷与转基因小鼠海马切片中海马长时程增强的减少一致。此外,我们发现星形胶质细胞和小胶质细胞标志物、炎症因子增加,突触标志物突触小泡减少,提示转基因小鼠大脑存在神经炎症和突触变化。总之,这些发现首次提供了证据,证明脑内 GAC 的过表达对体内学习和突触完整性有有害影响。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验