Suppr超能文献

可约与不可约不确定性下更新的神经机制

Neural Mechanisms of Updating under Reducible and Irreducible Uncertainty.

作者信息

Kobayashi Kenji, Hsu Ming

机构信息

Helen Wills Neuroscience Institute and.

Helen Wills Neuroscience Institute and

出版信息

J Neurosci. 2017 Jul 19;37(29):6972-6982. doi: 10.1523/JNEUROSCI.0535-17.2017. Epub 2017 Jun 16.

Abstract

Adaptive decision making depends on an agent's ability to use environmental signals to reduce uncertainty. However, because of multiple types of uncertainty, agents must take into account not only the extent to which signals violate prior expectations but also whether uncertainty can be reduced in the first place. Here we studied how human brains of both sexes respond to signals under conditions of reducible and irreducible uncertainty. We show behaviorally that subjects' value updating was sensitive to the reducibility of uncertainty, and could be quantitatively characterized by a Bayesian model where agents ignore expectancy violations that do not update beliefs or values. Using fMRI, we found that neural processes underlying belief and value updating were separable from responses to expectancy violation, and that reducibility of uncertainty in value modulated connections from belief-updating regions to value-updating regions. Together, these results provide insights into how agents use knowledge about uncertainty to make better decisions while ignoring mere expectancy violation. To make good decisions, a person must observe the environment carefully, and use these observations to reduce uncertainty about consequences of actions. Importantly, uncertainty should not be reduced purely based on how surprising the observations are, particularly because in some cases uncertainty is not reducible. Here we show that the human brain indeed reduces uncertainty adaptively by taking into account the nature of uncertainty and ignoring mere surprise. Behaviorally, we show that human subjects reduce uncertainty in a quasioptimal Bayesian manner. Using fMRI, we characterize brain regions that may be involved in uncertainty reduction, as well as the network they constitute, and dissociate them from brain regions that respond to mere surprise.

摘要

适应性决策取决于主体利用环境信号来减少不确定性的能力。然而,由于存在多种类型的不确定性,主体不仅必须考虑信号违背先前预期的程度,还必须首先考虑不确定性是否能够得以减少。在此,我们研究了在可减少和不可减少不确定性的条件下,两性的人类大脑如何对信号作出反应。我们通过行为研究表明,受试者的价值更新对不确定性的可减少性敏感,并且可以通过一个贝叶斯模型进行定量表征,在该模型中,主体会忽略那些不会更新信念或价值的预期违背情况。通过功能磁共振成像(fMRI),我们发现信念和价值更新背后的神经过程与对预期违背的反应是可分离的,并且价值不确定性的可减少性调节了从信念更新区域到价值更新区域的连接。这些结果共同为主体如何利用关于不确定性的知识来做出更好的决策,同时忽略单纯的预期违背提供了见解。要做出好的决策,一个人必须仔细观察环境,并利用这些观察结果来减少关于行动后果的不确定性。重要的是,不确定性不应仅仅基于观察结果的惊人程度来减少,特别是因为在某些情况下不确定性是无法减少的。在此我们表明,人类大脑确实通过考虑不确定性的本质并忽略单纯的意外情况来适应性地减少不确定性。在行为方面,我们表明人类受试者以一种近似最优的贝叶斯方式减少不确定性。通过功能磁共振成像,我们确定了可能参与减少不确定性的脑区及其构成的网络,并将它们与对单纯意外情况作出反应的脑区分离开来。

相似文献

1
Neural Mechanisms of Updating under Reducible and Irreducible Uncertainty.可约与不可约不确定性下更新的神经机制
J Neurosci. 2017 Jul 19;37(29):6972-6982. doi: 10.1523/JNEUROSCI.0535-17.2017. Epub 2017 Jun 16.
7

引用本文的文献

5
Surprising sounds influence risky decision making.惊人的声音影响冒险的决策。
Nat Commun. 2024 Sep 13;15(1):8027. doi: 10.1038/s41467-024-51729-4.
7
The parietal cortex has a causal role in ambiguity computations in humans.顶叶皮层在人类的歧义计算中具有因果作用。
PLoS Biol. 2024 Jan 10;22(1):e3002452. doi: 10.1371/journal.pbio.3002452. eCollection 2024 Jan.
9
A tripartite view of the posterior cingulate cortex.后扣带皮层的三分观点。
Nat Rev Neurosci. 2023 Mar;24(3):173-189. doi: 10.1038/s41583-022-00661-x. Epub 2022 Dec 1.

本文引用的文献

1
Neural signals encoding shifts in beliefs.编码信念转变的神经信号。
Neuroimage. 2016 Jan 15;125:578-586. doi: 10.1016/j.neuroimage.2015.10.067. Epub 2015 Oct 28.
3
Orthogonalization of regressors in FMRI models.功能磁共振成像模型中回归变量的正交化
PLoS One. 2015 Apr 28;10(4):e0126255. doi: 10.1371/journal.pone.0126255. eCollection 2015.
5
Hierarchical competitions subserving multi-attribute choice.支持多属性选择的分层竞争。
Nat Neurosci. 2014 Nov;17(11):1613-22. doi: 10.1038/nn.3836. Epub 2014 Oct 12.
7
Neural coding of uncertainty and probability.不确定性和概率的神经编码。
Annu Rev Neurosci. 2014;37:205-20. doi: 10.1146/annurev-neuro-071013-014017.
10
Probabilistic brains: knowns and unknowns.概率大脑:已知与未知。
Nat Neurosci. 2013 Sep;16(9):1170-8. doi: 10.1038/nn.3495. Epub 2013 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验