Bausch Johannes, Cubitt Toby
DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, UK.
Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK.
Linear Algebra Appl. 2016 Sep 1;504:64-107. doi: 10.1016/j.laa.2016.03.041.
We address two sets of long-standing open questions in linear algebra and probability theory, from a computational complexity perspective: stochastic matrix divisibility, and divisibility and decomposability of probability distributions. We prove that finite divisibility of stochastic matrices is an NP-complete problem, and extend this result to nonnegative matrices, and completely-positive trace-preserving maps, i.e. the quantum analogue of stochastic matrices. We further prove a complexity hierarchy for the divisibility and decomposability of probability distributions, showing that finite distribution divisibility is in P, but decomposability is NP-hard. For the former, we give an explicit polynomial-time algorithm. All results on distributions extend to weak-membership formulations, proving that the complexity of these problems is robust to perturbations.
从计算复杂性的角度出发,我们解决了线性代数和概率论中两组长期存在的开放性问题:随机矩阵的可除性,以及概率分布的可除性和可分解性。我们证明了随机矩阵的有限可除性是一个NP完全问题,并将此结果扩展到非负矩阵以及完全正定保迹映射,即随机矩阵的量子类似物。我们进一步证明了概率分布的可除性和可分解性的复杂性层次结构,表明有限分布可除性属于P类,但可分解性是NP难的。对于前者,我们给出了一个显式的多项式时间算法。所有关于分布的结果都扩展到了弱成员资格公式,证明了这些问题的复杂性对扰动具有鲁棒性。