Suppr超能文献

基于局部代表性瓦片的全切片数字病理图像中脑肿瘤类型的自动分类。

Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles.

机构信息

Department of Medicine (Stanford Biomedical Informatics Research), Stanford University School of Medicine, CA, USA.

Department of Radiology, Stanford University School of Medicine, CA, USA.

出版信息

Med Image Anal. 2016 May;30:60-71. doi: 10.1016/j.media.2015.12.002. Epub 2015 Dec 29.

Abstract

Computerized analysis of digital pathology images offers the potential of improving clinical care (e.g. automated diagnosis) and catalyzing research (e.g. discovering disease subtypes). There are two key challenges thwarting computerized analysis of digital pathology images: first, whole slide pathology images are massive, making computerized analysis inefficient, and second, diverse tissue regions in whole slide images that are not directly relevant to the disease may mislead computerized diagnosis algorithms. We propose a method to overcome both of these challenges that utilizes a coarse-to-fine analysis of the localized characteristics in pathology images. An initial surveying stage analyzes the diversity of coarse regions in the whole slide image. This includes extraction of spatially localized features of shape, color and texture from tiled regions covering the slide. Dimensionality reduction of the features assesses the image diversity in the tiled regions and clustering creates representative groups. A second stage provides a detailed analysis of a single representative tile from each group. An Elastic Net classifier produces a diagnostic decision value for each representative tile. A weighted voting scheme aggregates the decision values from these tiles to obtain a diagnosis at the whole slide level. We evaluated our method by automatically classifying 302 brain cancer cases into two possible diagnoses (glioblastoma multiforme (N = 182) versus lower grade glioma (N = 120)) with an accuracy of 93.1% (p << 0.001). We also evaluated our method in the dataset provided for the 2014 MICCAI Pathology Classification Challenge, in which our method, trained and tested using 5-fold cross validation, produced a classification accuracy of 100% (p << 0.001). Our method showed high stability and robustness to parameter variation, with accuracy varying between 95.5% and 100% when evaluated for a wide range of parameters. Our approach may be useful to automatically differentiate between the two cancer subtypes.

摘要

计算机化的数字病理学图像分析具有改善临床护理(例如自动化诊断)和促进研究(例如发现疾病亚型)的潜力。有两个关键挑战阻碍了数字病理学图像的计算机化分析:首先,全幻灯片病理学图像非常庞大,使得计算机化分析效率低下;其次,全幻灯片图像中与疾病不直接相关的多种组织区域可能会误导计算机诊断算法。我们提出了一种利用病理学图像中局部特征的粗到细分析来克服这两个挑战的方法。初始调查阶段分析了全幻灯片图像中粗区域的多样性。这包括从覆盖幻灯片的平铺区域中提取形状、颜色和纹理的空间局部特征。特征的降维评估了平铺区域中的图像多样性,聚类创建了代表性的组。第二阶段为每个组的单个代表性平铺提供详细分析。弹性网络分类器为每个代表性平铺生成诊断决策值。加权投票方案从这些平铺中聚合决策值,以获得整个幻灯片级别的诊断。我们通过自动将 302 例脑癌病例分为两种可能的诊断(多形性胶质母细胞瘤(N = 182)与低级别胶质瘤(N = 120)),准确率为 93.1%(p << 0.001)来评估我们的方法。我们还在 2014 年 MICCAI 病理学分类挑战赛提供的数据集上评估了我们的方法,我们的方法使用 5 折交叉验证进行训练和测试,产生了 100%的分类准确率(p << 0.001)。我们的方法对参数变化具有高度的稳定性和鲁棒性,在评估广泛的参数范围时,准确率在 95.5%到 100%之间变化。我们的方法可能有助于自动区分两种癌症亚型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验