Suppr超能文献

纳米多孔金生物界面:修饰纳米结构以控制神经细胞覆盖并增强电生理记录性能。

Nanoporous Gold Biointerfaces: Modifying Nanostructure to Control Neural Cell Coverage and Enhance Electrophysiological Recording Performance.

作者信息

Chapman Christopher A R, Wang Ling, Chen Hao, Garrison Joshua, Lein Pamela J, Seker Erkin

机构信息

Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA.

Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA 95616, USA.

出版信息

Adv Funct Mater. 2017 Jan 19;27(3). doi: 10.1002/adfm.201604631. Epub 2016 Dec 12.

Abstract

Nanostructured neural interface coatings have significantly enhanced recording fidelity in both implantable and in vitro devices. As such, nano-porous gold (np-Au) has shown promise as a multifunctional neural interface coating due, in part, to its ability to promote nanostructure-mediated reduction in astrocytic surface coverage while not affecting neuronal coverage. The goal of this study is to provide insight into the mechanisms by which the np-Au nanostructure drives the differential response of neurons versus astrocytes in an in vitro model. Utilizing microfabricated libraries that display varying feature sizes of np-Au, it is demonstrated that np-Au influ-ences neural cell coverage through modulating focal adhesion formation in a feature size-dependent manner. The results here show that surfaces with small (≈30 nm) features control astrocyte spreading through inhibition of focal adhesion formation, while surfaces with large (≈170 nm and greater) features control astrocyte spreading through other mechanotransduction mechanisms. This cellular response combined with lower electrical impedance of np-Au electrodes significantly enhances the fidelity and stability of electrophysiological recordings from cortical neuronglia co-cultures relative to smooth gold electrodes. Finally, by leveraging the effect of nanostructure on neuronal versus glial cell attachment, the use of laser-based nanostructure modulation is demonstrated for selectively patterning neurons with micrometer spatial resolution.

摘要

纳米结构的神经接口涂层显著提高了可植入设备和体外设备的记录保真度。因此,纳米多孔金(np-Au)已显示出作为多功能神经接口涂层的潜力,部分原因在于它能够促进纳米结构介导的星形胶质细胞表面覆盖率降低,同时不影响神经元覆盖率。本研究的目的是深入了解np-Au纳米结构在体外模型中驱动神经元与星形胶质细胞产生不同反应的机制。利用展示不同np-Au特征尺寸的微纳加工库,研究表明np-Au通过以特征尺寸依赖的方式调节粘着斑形成来影响神经细胞覆盖率。此处结果表明,具有小(≈30 nm)特征的表面通过抑制粘着斑形成来控制星形胶质细胞的铺展,而具有大(≈170 nm及更大)特征的表面则通过其他机械转导机制控制星形胶质细胞的铺展。这种细胞反应与np-Au电极较低的电阻抗相结合,相对于光滑金电极,显著提高了皮质神经元-神经胶质细胞共培养物电生理记录的保真度和稳定性。最后,通过利用纳米结构对神经元与神经胶质细胞附着的影响,展示了基于激光的纳米结构调制用于以微米空间分辨率选择性地对神经元进行图案化。

相似文献

5
Nanostructured gold electrodes promote neural maturation and network connectivity.纳米结构金电极促进神经成熟和网络连接。
Biomaterials. 2021 Dec;279:121186. doi: 10.1016/j.biomaterials.2021.121186. Epub 2021 Oct 15.
7

引用本文的文献

1
Interfacing with the Brain: How Nanotechnology Can Contribute.与大脑交互:纳米技术如何发挥作用。
ACS Nano. 2025 Mar 25;19(11):10630-10717. doi: 10.1021/acsnano.4c10525. Epub 2025 Mar 10.

本文引用的文献

2
The influence of gold surface texture on microglia morphology and activation.
Biomater Sci. 2014 Jan 29;2(1):110-120. doi: 10.1039/c3bm60096c. Epub 2013 Sep 23.
5
Biofouling-resilient nanoporous gold electrodes for DNA sensing.抗生物污染的纳米多孔金电极用于 DNA 传感。
Anal Chem. 2015 Sep 1;87(17):8618-22. doi: 10.1021/acs.analchem.5b02969. Epub 2015 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验