Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany.
Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
Adv Mater. 2017 Dec;29(48). doi: 10.1002/adma.201700431. Epub 2017 Jun 19.
Sodium-ion batteries (SIBs) have attracted increasing attention in the past decades, because of high overall abundance of precursors, their even geographical distribution, and low cost. Apart from inherent thermodynamic disadvantages, SIBs have to overcome multiple kinetic problems, such as fast capacity decay, low rate capacities and low Coulombic efficiencies. A special case is sodium super ion conductor (NASICON)-based electrode materials as they exhibit - besides pronounced structural stability - exceptionally high ion conductivity, rendering them most promising for sodium storage. Owing to the limiting, comparatively low electronic conductivity, nano-structuring is a prerequisite for achieving satisfactory rate-capability. In this review, we analyze advantages and disadvantages of NASICON-type electrode materials and highlight electrode structure design principles for obtaining the desired electrochemical performance. Moreover, we give an overview of recent approaches to enhance electrical conductivity and structural stability of cathode and anode materials based on NASICON structure. We believe that this review provides a pertinent insight into relevant design principles and inspires further research in this respect.
钠离子电池(SIBs)在过去几十年中引起了越来越多的关注,因为其前体具有高的总体丰度、均匀的地理分布和低成本。除了固有的热力学劣势外,SIBs 还必须克服多种动力学问题,例如快速容量衰减、低倍率容量和低库仑效率。一种特殊情况是基于钠超离子导体(NASICON)的电极材料,因为它们除了表现出明显的结构稳定性外,还具有异常高的离子电导率,这使得它们在钠离子存储方面最有前途。由于电子电导率的限制,相对较低,纳米结构是实现令人满意的倍率性能的前提。在这篇综述中,我们分析了 NASICON 型电极材料的优缺点,并强调了获得所需电化学性能的电极结构设计原则。此外,我们还概述了最近提高基于 NASICON 结构的正极和负极材料的电导率和结构稳定性的方法。我们相信,这篇综述为相关设计原则提供了一个恰当的见解,并激发了这方面的进一步研究。