Capron Odile, Couto Luis D
Vlaamse Instelling voor Technologisch Onderzoek (VITO) NV, Boeretang 200, 2400 Mol, Belgium.
EnergyVille, Thor Park 8310, 3600 Genk, Belgium.
Materials (Basel). 2023 Jul 21;16(14):5146. doi: 10.3390/ma16145146.
This paper presents an innovative and efficient methodology for the determination of the solid-state diffusion coefficient in electrode materials with phase transitions for which the assumption of applying the well-known formula from the work of Weppner et al. is not satisfied. This methodology includes a k-means machine learning screening of Galvanostatic Intermittent Titration Technique (GITT) steps, whose outcomes feed a physics-informed algorithm, the latter involving a pseudo-two-dimensional (P2D) electrochemical model for carrying out the numerical simulations. This methodology enables determining, for all of the 47 steps of the GITT characterization, the dependency of the Na diffusion coefficient as well as the reaction rate constant during the sodiation of an NVPF electrode to vary between 9 × 10-18 and 6.8 × 10-16 m·s and between 2.7 × 10-14 and 1.5 × 10-12 m·mol·s, respectively. This methodology, also validated in this paper, is (a) innovative since it presents for the first time the successful application of unsupervised machine learning via k-means clustering for the categorization of GITT steps according to their characteristics in terms of voltage; (b) efficient given the considerable reduction in the number of iterations required with an average number of iterations equal to 8, and given the fact the entire experimental duration of each step should not be simulated anymore and hence can be simply restricted to the part with current and a small part of the rest period; (c) generically applicable since the methodology and its physics-informed algorithm only rely on "if" and "else" statements, i.e., no particular module/toolbox is required, which enables its replication and implementation for electrochemical models written in any programming language.
本文提出了一种创新且高效的方法,用于测定具有相变的电极材料中的固态扩散系数,对于这类材料,应用韦普纳等人工作中著名公式的假设并不成立。该方法包括对恒电流间歇滴定技术(GITT)步骤进行k均值机器学习筛选,其结果为一个基于物理的算法提供输入,该算法涉及一个伪二维(P2D)电化学模型以进行数值模拟。这种方法能够确定在GITT表征的所有47个步骤中,NVPF电极在钠化过程中Na扩散系数的依赖性以及反应速率常数,其变化范围分别在9×10⁻¹⁸至6.8×10⁻¹⁶ m·s⁻¹之间以及2.7×10⁻¹⁴至1.5×10⁻¹² m·mol⁻¹·s⁻¹之间。本文还验证了该方法:(a)具有创新性,因为它首次成功应用无监督机器学习通过k均值聚类根据GITT步骤在电压方面的特征对其进行分类;(b)高效,因为所需迭代次数大幅减少,平均迭代次数等于8,并且由于不再需要模拟每个步骤的整个实验持续时间,因此可以简单地将其限制在有电流的部分以及其余时间段的一小部分;(c)具有普遍适用性,因为该方法及其基于物理的算法仅依赖于“if”和“else”语句,即不需要特定的模块/工具箱,这使得它能够被复制并应用于用任何编程语言编写的电化学模型。