U.S. Naval Research Laboratory , Surface Chemistry Branch (Code 6170), Washington, DC 20375, United States.
Langmuir. 2017 Sep 19;33(37):9390-9397. doi: 10.1021/acs.langmuir.7b01046. Epub 2017 Jun 19.
Electrocatalysis of the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) was assessed for a series of Ni-substituted ferrites (NiFeOx, where y = 0.1 to 0.9) as expressed in porous, high-surface-area forms (ambigel and aerogel nanoarchitectures). We then correlate electrocatalytic activity with Ni:Fe stoichiometry as a function of surface area, crystallite size, and free volume. In order to ensure in-series comparisons, calcination at 350 °C/air was necessary to crystallize the respective NiFeOx nanoarchitectures, which index to the inverse spinel structure for Fe-rich materials (y ≤ 0.33), rock salt for the most Ni-rich material (y = 0.9), and biphasic for intermediate stoichiometry (0.5 ≤ y ≤ 0.67). In the intermediate Ni:Fe stoichiometric range (0.33 ≤ y ≤ 0.67), the OER current density at 390 mV increases monotonically with increasing Ni content and increasing surface area, but with different working curves for ambigels versus aerogels. At a common stoichiometry within this range, ambigels and aerogels yield comparable OER performance, but do so by expressing larger crystallite size (ambigel) versus higher surface area (aerogel). Effective OER activity can be achieved without requiring supercritical-fluid extraction as long as moderately high surface area, porous materials can be prepared. We find improved OER performance (η decreases from 390 to 373 mV) for NiFeOx aerogel heat-treated at 300 °C/Ar, owing to an increase in crystallite size (2.7 to 4.1 nm). For the ORR, electrocatalytic activity favors Fe-rich NiFeOx materials; however, as the Ni-content increases beyond y = 0.5, a two-electron reduction pathway is still exhibited, demonstrating that bifunctional OER and ORR activity may be possible by choosing a nickel ferrite nanoarchitecture that provides high OER activity with sufficient ORR activity. Assessing the catalytic activity requires an appreciation of the multivariate interplay among Ni:Fe stoichiometry, surface area, crystallographic phase, and crystallite size.
我们评估了一系列镍取代的铁酸盐(NiFeOx,其中 y = 0.1 至 0.9)作为多孔、高表面积形式(ambigel 和气凝胶纳米结构)的析氧反应(OER)和氧还原反应(ORR)的电催化剂。然后,我们将电催化活性与 Ni:Fe 化学计量比相关联,作为表面积、晶粒尺寸和自由体积的函数。为了确保串联比较,需要在 350°C/空气下煅烧以结晶各自的 NiFeOx 纳米结构,这对于富铁材料(y ≤ 0.33)指数到反尖晶石结构,对于最富镍的材料(y = 0.9)为岩盐,对于中间化学计量比(0.5 ≤ y ≤ 0.67)为双相。在中间的 Ni:Fe 化学计量比范围内(0.33 ≤ y ≤ 0.67),在 390 mV 时的 OER 电流密度随 Ni 含量的增加和表面积的增加而单调增加,但对于 ambiguels 与 aerogels 有不同的工作曲线。在该范围内的共同化学计量比下,ambigels 和 aerogels 表现出相当的 OER 性能,但通过表达更大的晶粒尺寸(ambigel)与更高的表面积(aerogel)来实现。只要可以制备中等高表面积的多孔材料,就可以实现有效的 OER 活性,而无需使用超临界流体萃取。我们发现,NiFeOx 气凝胶在 300°C/Ar 下热处理后 OER 性能得到改善(η 从 390 降至 373 mV),这归因于晶粒尺寸的增加(从 2.7 至 4.1nm)。对于 ORR,电催化活性有利于富铁的 NiFeOx 材料;然而,随着 Ni 含量超过 y = 0.5,仍然表现出两电子还原途径,这表明通过选择提供高 OER 活性和足够的 ORR 活性的镍铁氧体纳米结构,可能实现双功能 OER 和 ORR 活性。评估催化活性需要了解 Ni:Fe 化学计量比、表面积、晶相和晶粒尺寸之间的多元相互作用。