Bachelard Nicolas, Ropp Chad, Dubois Marc, Zhao Rongkuo, Wang Yuan, Zhang Xiang
NSF Nanoscale Science and Engineering Center, 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA.
Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA.
Nat Mater. 2017 Aug;16(8):808-813. doi: 10.1038/nmat4920. Epub 2017 Jun 19.
Material systems that reside far from thermodynamic equilibrium have the potential to exhibit dynamic properties and behaviours resembling those of living organisms. Here we realize a non-equilibrium material characterized by a bandgap whose edge is enslaved to the wavelength of an external coherent drive. The structure dynamically self-assembles into an unconventional pseudo-crystal geometry that equally distributes momentum across elements. The emergent bandgap is bestowed with lifelike properties, such as the ability to self-heal to perturbations and adapt to sudden changes in the drive. We derive an exact analytical solution for both the spatial organization and the bandgap features, revealing the mechanism for enslavement. This work presents a framework for conceiving lifelike non-equilibrium materials and emphasizes the potential for the dynamic imprinting of material properties through external degrees of freedom.
远离热力学平衡的材料系统有可能展现出类似于生物的动态特性和行为。在此,我们实现了一种非平衡材料,其特征在于具有一个带隙,该带隙的边缘受外部相干驱动波长的控制。该结构动态地自组装成一种非常规的伪晶体几何形状,能在各元素间均匀分配动量。所出现的带隙具有类似生命的特性,比如对微扰进行自我修复以及适应驱动突然变化的能力。我们推导出了空间组织和带隙特征的精确解析解,揭示了这种控制机制。这项工作提出了一个构想类似生命的非平衡材料的框架,并强调了通过外部自由度对材料特性进行动态印记的潜力。