Suppr超能文献

宏观定向运动在运动胶体群体中的出现。

Emergence of macroscopic directed motion in populations of motile colloids.

机构信息

1] PMMH, CNRS UMR7636, ESPCI-ParisTech, Université Paris Diderot and Université Pierre et Marie Curie, 10 rue Vauquelin, 75005 Paris, France [2].

出版信息

Nature. 2013 Nov 7;503(7474):95-8. doi: 10.1038/nature12673.

Abstract

From the formation of animal flocks to the emergence of coordinated motion in bacterial swarms, populations of motile organisms at all scales display coherent collective motion. This consistent behaviour strongly contrasts with the difference in communication abilities between the individuals. On the basis of this universal feature, it has been proposed that alignment rules at the individual level could solely account for the emergence of unidirectional motion at the group level. This hypothesis has been supported by agent-based simulations. However, more complex collective behaviours have been systematically found in experiments, including the formation of vortices, fluctuating swarms, clustering and swirling. All these (living and man-made) model systems (bacteria, biofilaments and molecular motors, shaken grains and reactive colloids) predominantly rely on actual collisions to generate collective motion. As a result, the potential local alignment rules are entangled with more complex, and often unknown, interactions. The large-scale behaviour of the populations therefore strongly depends on these uncontrolled microscopic couplings, which are extremely challenging to measure and describe theoretically. Here we report that dilute populations of millions of colloidal rolling particles self-organize to achieve coherent motion in a unique direction, with very few density and velocity fluctuations. Quantitatively identifying the microscopic interactions between the rollers allows a theoretical description of this polar-liquid state. Comparison of the theory with experiment suggests that hydrodynamic interactions promote the emergence of collective motion either in the form of a single macroscopic 'flock', at low densities, or in that of a homogenous polar phase, at higher densities. Furthermore, hydrodynamics protects the polar-liquid state from the giant density fluctuations that were hitherto considered the hallmark of populations of self-propelled particles. Our experiments demonstrate that genuine physical interactions at the individual level are sufficient to set homogeneous active populations into stable directed motion.

摘要

从动物群体的形成到细菌群的协调运动的出现,所有尺度上的运动生物群体都表现出连贯的集体运动。这种一致的行为与个体之间的通讯能力差异形成鲜明对比。基于这一普遍特征,有人提出,个体水平上的对齐规则可以单独解释群体水平上单向运动的出现。这一假设得到了基于主体的模拟的支持。然而,实验中系统地发现了更复杂的集体行为,包括涡旋的形成、波动的群体、聚类和旋转。所有这些(生物和人造)模型系统(细菌、生物纤维和分子马达、摇晃的颗粒和反应胶体)主要依赖于实际碰撞来产生集体运动。因此,潜在的局部对齐规则与更复杂的、通常未知的相互作用纠缠在一起。因此,群体的大规模行为强烈依赖于这些不受控制的微观耦合,这些耦合在理论上极难测量和描述。在这里,我们报告说,数百万个胶体滚动粒子的稀疏散布体自组织起来,以实现独特方向的相干运动,其密度和速度波动非常小。定量识别滚子之间的微观相互作用,允许对这种极性液体状态进行理论描述。理论与实验的比较表明,流体动力学相互作用以单个宏观“群体”的形式或以更高密度的均匀极性相的形式促进集体运动的出现。此外,流体动力学保护了极性液体状态免受迄今为止被认为是自推进粒子群体标志的巨大密度波动的影响。我们的实验表明,个体水平上真正的物理相互作用足以使均匀的活性群体进入稳定的定向运动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验