Suppr超能文献

个体研究中应用的强大灵活的数据分析:n 份 1 数据的动态建模。

Dynamic modelling of n-of-1 data: powerful and flexible data analytics applied to individualised studies.

机构信息

a Institute of Health & Society, Newcastle University , Newcastle upon Tyne , UK.

b Fuse, UKCRC Centre for Translational Research in Public Health, Institute of Health & Society, Newcastle University , Newcastle upon Tyne , UK.

出版信息

Health Psychol Rev. 2017 Sep;11(3):222-234. doi: 10.1080/17437199.2017.1343680. Epub 2017 Jul 6.

Abstract

N-of-1 studies are based on repeated observations within an individual or unit over time and are acknowledged as an important research method for generating scientific evidence about the health or behaviour of an individual. Statistical analyses of n-of-1 data require accurate modelling of the outcome while accounting for its distribution, time-related trend and error structures (e.g., autocorrelation) as well as reporting readily usable contextualised effect sizes for decision-making. A number of statistical approaches have been documented but no consensus exists on which method is most appropriate for which type of n-of-1 design. We discuss the statistical considerations for analysing n-of-1 studies and briefly review some currently used methodologies. We describe dynamic regression modelling as a flexible and powerful approach, adaptable to different types of outcomes and capable of dealing with the different challenges inherent to n-of-1 statistical modelling. Dynamic modelling borrows ideas from longitudinal and event history methodologies which explicitly incorporate the role of time and the influence of past on future. We also present an illustrative example of the use of dynamic regression on monitoring physical activity during the retirement transition. Dynamic modelling has the potential to expand researchers' access to robust and user-friendly statistical methods for individualised studies.

摘要

N-of-1 研究基于个体或单位随时间的重复观察,被公认为生成关于个体健康或行为的科学证据的重要研究方法。n-of-1 数据的统计分析需要准确地对结果进行建模,同时考虑其分布、时间相关趋势和误差结构(例如自相关),并报告易于用于决策的上下文相关的效应大小。已经记录了许多统计方法,但对于哪种方法最适合哪种类型的 n-of-1 设计,尚无共识。我们讨论了分析 n-of-1 研究的统计考虑因素,并简要回顾了一些当前使用的方法。我们将动态回归模型描述为一种灵活而强大的方法,适用于不同类型的结果,并能够应对 n-of-1 统计建模固有的各种挑战。动态建模借鉴了纵向和事件历史方法的思想,这些方法明确地纳入了时间的作用和过去对未来的影响。我们还展示了一个使用动态回归监测退休过渡期间身体活动的示例。动态建模有可能扩大研究人员对个性化研究的稳健且用户友好的统计方法的访问。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验