Suppr超能文献

人体肠道微生物组如何克服糖胺聚糖带来的硫酸化问题。

How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans.

机构信息

Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.

Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, F-13288 Marseille, France.

出版信息

Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):7037-7042. doi: 10.1073/pnas.1704367114. Epub 2017 Jun 19.

Abstract

The human microbiota, which plays an important role in health and disease, uses complex carbohydrates as a major source of nutrients. Utilization hierarchy indicates that the host glycosaminoglycans heparin (Hep) and heparan sulfate (HS) are high-priority carbohydrates for , a prominent member of the human microbiota. The sulfation patterns of these glycosaminoglycans are highly variable, which presents a significant enzymatic challenge to the polysaccharide lyases and sulfatases that mediate degradation. It is possible that the bacterium recruits lyases with highly plastic specificities and expresses a repertoire of enzymes that target substructures of the glycosaminoglycans with variable sulfation or that the glycans are desulfated before cleavage by the lyases. To distinguish between these mechanisms, the components of the Hep/HS degrading apparatus were analyzed. The data showed that the bacterium expressed a single-surface endo-acting lyase that cleaved HS, reflecting its higher molecular weight compared with Hep. Both Hep and HS oligosaccharides imported into the periplasm were degraded by a repertoire of lyases, with each enzyme displaying specificity for substructures within these glycosaminoglycans that display a different degree of sulfation. Furthermore, the crystal structures of a key surface glycan binding protein, which is able to bind both Hep and HS, and periplasmic sulfatases reveal the major specificity determinants for these proteins. The locus described here is highly conserved within the human gut , indicating that the model developed is of generic relevance to this important microbial community.

摘要

人类微生物群在健康和疾病中发挥着重要作用,它将复杂的碳水化合物作为主要的营养来源。利用层次结构表明,宿主糖胺聚糖肝素 (Hep) 和硫酸乙酰肝素 (HS) 是肠道中一个重要微生物的首选碳水化合物。这些糖胺聚糖的硫酸化模式变化很大,这对介导降解的多糖裂解酶和硫酸酯酶提出了重大的酶学挑战。该细菌可能招募具有高度可塑性特异性的裂解酶,并表达针对糖胺聚糖亚结构的酶库,这些亚结构的硫酸化程度不同,或者在裂解酶切割之前糖链被脱硫酸。为了区分这些机制,分析了 Hep/HS 降解装置的成分。数据表明,该细菌表达了一种单一表面内作用的裂解酶,可切割 HS,这反映了它的分子量高于 Hep。Hep 和 HS 寡糖都被一套裂解酶在周质中降解,每种酶都对这些糖胺聚糖中的亚结构具有特异性,这些亚结构的硫酸化程度不同。此外,能够结合 Hep 和 HS 的关键表面聚糖结合蛋白和周质硫酸酯酶的晶体结构揭示了这些蛋白质的主要特异性决定因素。该基因座在人类肠道中高度保守,表明所开发的模型对这个重要微生物群落具有普遍的相关性。

相似文献

引用本文的文献

本文引用的文献

2
, a program for rapid shape determination in small-angle scattering.用于小角散射中快速形状测定的一个程序。
J Appl Crystallogr. 2009 Apr 1;42(Pt 2):342-346. doi: 10.1107/S0021889809000338. Epub 2009 Jan 24.
9
Automatic prediction of polysaccharide utilization loci in Bacteroidetes species.自动预测拟杆菌门物种中的多糖利用基因座。
Bioinformatics. 2015 Mar 1;31(5):647-55. doi: 10.1093/bioinformatics/btu716. Epub 2014 Oct 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验