Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom.
Microbial Enzymology Group, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
mBio. 2021 Aug 31;12(4):e0136821. doi: 10.1128/mBio.01368-21. Epub 2021 Aug 3.
The human gut microbiota (HGM) contributes to the physiology and health of its host. The health benefits provided by dietary manipulation of the HGM require knowledge of how glycans, the major nutrients available to this ecosystem, are metabolized. Arabinogalactan proteins (AGPs) are a ubiquitous feature of plant polysaccharides available to the HGM. Although the galactan backbone and galactooligosaccharide side chains of AGPs are conserved, the decorations of these structures are highly variable. Here, we tested the hypothesis that these variations in arabinogalactan decoration provide a selection mechanism for specific species within the HGM. The data showed that only a single bacterium, B. plebeius, grew on red wine AGP (Wi-AGP) and seaweed AGP (SW-AGP) in mono- or mixed culture. Wi-AGP thus acts as a privileged nutrient for a species within the HGM that utilizes marine and terrestrial plant glycans. The B. plebeius polysaccharide utilization loci (PULs) upregulated by AGPs encoded a polysaccharide lyase, located in the enzyme family GH145, which hydrolyzed Rha-Glc linkages in Wi-AGP. Further analysis of GH145 identified an enzyme with two active sites that displayed glycoside hydrolase and lyase activities, respectively, which conferred substrate flexibility for different AGPs. The AGP-degrading apparatus of B. plebeius also contained a sulfatase, BpS1_8, active on SW-AGP and Wi-AGP, which played a pivotal role in the utilization of these glycans by the bacterium. BpS1_8 enabled other species to access the sulfated AGPs, providing a route to introducing privileged nutrient utilization into probiotic and commensal organisms that could improve human health. Dietary manipulation of the HGM requires knowledge of how glycans available to this ecosystem are metabolized. The variable structures that decorate the core component of plant AGPs may influence their utilization by specific organisms within the HGM. Here, we evaluated the ability of species to utilize a marine and terrestrial AGP. The data showed that a single bacterium, B. plebeius, grew on Wi-AGP and SW-AGP in mono- or mixed culture. Wi-AGP is thus a privileged nutrient for a species that utilizes marine and terrestrial plant glycans. A key component of the AGP-degrading apparatus of B. plebeius is a sulfatase that conferred the ability of the bacterium to utilize these glycans. The enzyme enabled other species to access the sulfated AGPs, providing a route to introducing privileged nutrient utilization into probiotic and commensal organisms that could improve human health.
人类肠道微生物群(HGM)有助于宿主的生理和健康。通过饮食操纵 HGM 来提供健康益处,需要了解可用于此生态系统的糖如何被代谢。阿拉伯半乳聚糖蛋白(AGP)是 HGM 可利用的植物多糖的普遍特征。尽管 AGP 的半乳糖主链和半乳糖寡糖侧链是保守的,但这些结构的修饰是高度可变的。在这里,我们检验了这样一个假设,即阿拉伯半乳聚糖修饰的这些变化为 HGM 中的特定 物种提供了一种选择机制。数据表明,只有一种细菌,B. plebeius,在单培养或混合培养中可以在红酒 AGP(Wi-AGP)和海藻 AGP(SW-AGP)上生长。因此,Wi-AGP 是 HGM 中利用海洋和陆地植物糖的 物种的特权营养物质。AGP 上调的 B. plebeius 多糖利用基因座(PULs)编码了一种位于 GH145 酶家族中的多糖裂解酶,该酶水解 Wi-AGP 中的 Rha-Glc 键。对 GH145 的进一步分析鉴定出一种具有两个活性位点的酶,分别具有糖苷水解酶和裂解酶活性,这为不同的 AGP 提供了底物灵活性。B. plebeius 的 AGP 降解装置还包含一种 BpS1_8 磺基转移酶,该酶在 SW-AGP 和 Wi-AGP 上均具有活性,这在细菌利用这些糖方面起着关键作用。BpS1_8 使其他 物种能够利用硫酸化的 AGP,为引入可改善人类健康的益生菌和共生生物的特权营养物质利用提供了途径。
HGM 的饮食操纵需要了解可用于此生态系统的糖如何被代谢。修饰植物 AGP 核心成分的可变结构可能会影响它们在 HGM 中特定 物种的利用。在这里,我们评估了 物种利用海洋和陆地 AGP 的能力。数据表明,只有一种细菌,B. plebeius,在单培养或混合培养中可以在 Wi-AGP 和 SW-AGP 上生长。因此,Wi-AGP 是一种特权营养物质,可被利用海洋和陆地植物糖的 物种利用。B. plebeius 的 AGP 降解装置的一个关键组成部分是一种磺基转移酶,赋予了细菌利用这些糖的能力。该酶使其他 物种能够利用硫酸化的 AGP,为引入可改善人类健康的益生菌和共生生物的特权营养物质利用提供了途径。