State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong Universitygrid.27255.37, Qingdao, People's Republic of China.
Department of Pathogen Biology, School of Basic Medical Science, Shandong Universitygrid.27255.37, Jinan, People's Republic of China.
Appl Environ Microbiol. 2022 Nov 22;88(22):e0154622. doi: 10.1128/aem.01546-22. Epub 2022 Nov 7.
The degradation of glycosaminoglycans (GAGs) by intestinal bacteria is critical for their colonization in the human gut and the health of the host. Both colonic and have been reported to degrade GAGs; however, the enzymatic details of the latter remain largely unknown. Our bioinformatic analyses of fecal revealed that their genomes, especially Hungatella hathewayi strains, are an abundant source of putative GAG-specific catabolic enzymes. Subsequently, we isolated a strain, H. hathewayi N2-326, that can catabolize various GAGs. While H. hathewayi N2-326 was as efficient in utilizing chondroitin sulfate A (CSA) and dermatan sulfate as Bacteroides thetaiotaomicron, a well-characterized GAG degrader, it outperformed B. thetaiotaomicron in assimilating hyaluronic acid. Unlike B. thetaiotaomicron, H. hathewayi N2-326 could not utilize heparin. The chondroitin lyase activity of H. hathewayi N2-326 was found to be present predominantly in the culture supernatant. Genome sequence analysis revealed three putative GAG lyases, but only the -chondroitin ABC lyase was upregulated in the presence of CSA. In addition, five CAZyme gene clusters containing GAG metabolism genes were significantly upregulated when grown on CSA. Further characterization of the recombinant chondroitin ABC lyase revealed that it cleaves GAGs predominantly in an exo-mode to produce unsaturated disaccharides as the primary hydrolytic product while exhibiting a higher specific activity than reported chondroitin ABC lyases. -chondroitin ABC lyase represents the first characterized chondroitin lyase from intestinal and offers a viable commercial option for the production of chondroitin, dermatan, and hyaluronan oligosaccharides and also for potential medical applications. An increased understanding of GAG metabolism by intestinal bacteria is critical in identifying the driving factors for the composition, modulation, and homeostasis of the human gut microbiota. In addition, GAG-depolymerizing polysaccharide lyases are highly desired enzymes for the production of GAG oligosaccharides and as therapeutics. At present, the dissection of the enzymatic machinery for GAG degradation is highly skewed toward . In this study, we have isolated an efficient GAG-degrading bacterium from human feces and characterized the first chondroitin ABC lyase from a , which complements the fundamental knowledge of GAG utilization in the human colon. The genomic and transcriptomic analysis of the bacterium shows that might use a distinct approach to catabolize GAGs from that used by . The high specific activity of the characterized chondroitin ABC lyase aids future attempts to develop a commercial chondroitinase for industrial and medicinal applications.
肠道细菌对糖胺聚糖(GAGs)的降解对其在人类肠道中的定植和宿主健康至关重要。已有报道称结肠和拟杆菌都能降解 GAGs;然而,后者的酶学细节在很大程度上仍不清楚。我们对粪便拟杆菌属的生物信息学分析表明,它们的基因组,尤其是亨盖特菌属(Hungatella)菌株,是大量潜在的 GAG 特异性代谢酶的来源。随后,我们分离到一株能够代谢各种 GAG 的拟杆菌属(H. hathewayi)菌株,H. hathewayi N2-326。与已被充分研究的 GAG 降解菌拟杆菌属(Bacteroides thetaiotaomicron)相比,H. hathewayi N2-326 能够有效利用硫酸软骨素 A(chondroitin sulfate A,CSA)和硫酸皮肤素(dermatan sulfate),但其同化透明质酸(hyaluronic acid)的能力优于 B. thetaiotaomicron。与 B. thetaiotaomicron 不同,H. hathewayi N2-326 不能利用肝素(heparin)。我们发现 H. hathewayi N2-326 的软骨素裂解酶活性主要存在于培养上清液中。基因组序列分析表明,存在三种潜在的 GAG 裂解酶,但只有在 CSA 存在时,-软骨素 ABC 裂解酶才被上调。此外,当在 CSA 上生长时,有五个 CAZyme 基因簇显著上调,其中包含 GAG 代谢基因。对重组软骨素 ABC 裂解酶的进一步表征表明,它主要以外切模式切割 GAG,产生不饱和二糖作为主要水解产物,同时表现出比报道的软骨素 ABC 裂解酶更高的比活性。-软骨素 ABC 裂解酶代表了从肠道拟杆菌属中鉴定出的首个软骨素裂解酶,为软骨素、硫酸皮肤素和透明质酸寡糖的生产提供了可行的商业选择,也为潜在的医学应用提供了可能。肠道细菌对 GAG 代谢的深入了解对于确定人类肠道微生物组的组成、调节和动态平衡的驱动因素至关重要。此外,GAG 解聚多糖裂解酶是生产 GAG 寡糖和作为治疗剂的理想酶。目前,GAG 降解的酶学机制的剖析在很大程度上偏向于拟杆菌属。在本研究中,我们从人类粪便中分离出一株高效的 GAG 降解菌,并从一种肠道拟杆菌属中鉴定出首个软骨素 ABC 裂解酶,这补充了人类结肠中 GAG 利用的基本知识。该细菌的基因组和转录组分析表明,它可能使用一种不同于拟杆菌属的独特方法来代谢 GAGs。所鉴定的软骨素 ABC 裂解酶具有较高的比活性,有助于未来尝试开发用于工业和医学应用的商业化软骨素酶。