Hu Meng, He Julong, Zhao Zhisheng, Strobel Timothy A, Hu Wentao, Yu Dongli, Sun Hao, Liu Lingyu, Li Zihe, Ma Mengdong, Kono Yoshio, Shu Jinfu, Mao Ho-Kwang, Fei Yingwei, Shen Guoyin, Wang Yanbin, Juhl Stephen J, Huang Jian Yu, Liu Zhongyuan, Xu Bo, Tian Yongjun
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA.
Sci Adv. 2017 Jun 9;3(6):e1603213. doi: 10.1126/sciadv.1603213. eCollection 2017 Jun.
Carbon's unique ability to have both sp and sp bonding states gives rise to a range of physical attributes, including excellent mechanical and electrical properties. We show that a series of lightweight, ultrastrong, hard, elastic, and conductive carbons are recovered after compressing sp-hybridized glassy carbon at various temperatures. Compression induces the local buckling of graphene sheets through sp nodes to form interpenetrating graphene networks with long-range disorder and short-range order on the nanometer scale. The compressed glassy carbons have extraordinary specific compressive strengths-more than two times that of commonly used ceramics-and simultaneously exhibit robust elastic recovery in response to local deformations. This type of carbon is an optimal ultralight, ultrastrong material for a wide range of multifunctional applications, and the synthesis methodology demonstrates potential to access entirely new metastable materials with exceptional properties.
碳具有独特的能力,能同时拥有sp和sp键合状态,这产生了一系列物理特性,包括优异的机械和电学性能。我们表明,在不同温度下压缩sp杂化玻璃碳后,可得到一系列轻质、超强、坚硬、有弹性且导电的碳材料。压缩通过sp节点诱导石墨烯片局部屈曲,形成纳米尺度上具有长程无序和短程有序的互穿石墨烯网络。压缩后的玻璃碳具有非凡的比抗压强度——是常用陶瓷的两倍多——并且在局部变形时同时表现出强大的弹性恢复能力。这种类型的碳是适用于广泛多功能应用的最佳超轻质、超强材料,并且该合成方法显示出获得具有特殊性能的全新亚稳材料的潜力。