Suppr超能文献

具有轻质、超高强度、大断裂应变和高阻尼能力的纳米多孔非晶碳纳米柱。

Nanoporous amorphous carbon nanopillars with lightweight, ultrahigh strength, large fracture strain, and high damping capability.

作者信息

Li Zhongyuan, Bhardwaj Ayush, He Jinlong, Zhang Wenxin, Tran Thomas T, Li Ying, McClung Andrew, Nuguri Sravya, Watkins James J, Lee Seok-Woo

机构信息

Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, 25 King Hill Road, Storrs, CT, 06269-3136, USA.

Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA, 01003, USA.

出版信息

Nat Commun. 2024 Sep 17;15(1):8151. doi: 10.1038/s41467-024-52359-6.

Abstract

Simultaneous achievement of lightweight, ultrahigh strength, large fracture strain, and high damping capability is challenging because some of these mechanical properties are mutually exclusive. Here, we utilize self-assembled polymeric carbon precursor materials in combination with scalable nano-imprinting lithography to produce nanoporous carbon nanopillars. Remarkably, nanoporosity induced via sacrificial template significantly reduces the mass density of amorphous carbon to 0.66 ~ 0.82 g cm while the yield and fracture strengths of nanoporous carbon nanopillars are higher than those of most engineering materials with the similar mass density. Moreover, these nanopillars display both elastic and plastic behavior with large fracture strain. A reversible part of the sp-to-sp transition produces large elastic strain and a high loss factor (up to 0.033) comparable to Ni-Ti shape memory alloys. The irreversible part of the sp-to-sp transition enables plastic deformation, leading to a large fracture strain of up to 35%. These findings are substantiated using simulation studies. None of the existing structural materials exhibit a comparable combination of mass density, strength, deformability, and damping capability. Hence, the results of this study illustrate the potential of both dense and nanoporous amorphous carbon materials as superior structural nanomaterials.

摘要

同时实现轻质、超高强度、大断裂应变和高阻尼能力具有挑战性,因为其中一些机械性能是相互排斥的。在此,我们利用自组装聚合物碳前驱体材料与可扩展的纳米压印光刻技术相结合,制备出纳米多孔碳纳米柱。值得注意的是,通过牺牲模板诱导的纳米孔隙率显著降低了非晶碳的质量密度,使其达到0.66~0.82 g/cm³,而纳米多孔碳纳米柱的屈服强度和断裂强度高于大多数具有相似质量密度的工程材料。此外,这些纳米柱在大断裂应变下同时表现出弹性和塑性行为。sp-to-sp转变的可逆部分产生大的弹性应变和与镍钛形状记忆合金相当的高损耗因子(高达0.033)。sp-to-sp转变的不可逆部分使塑性变形成为可能,从而导致高达35%的大断裂应变。这些发现通过模拟研究得到了证实。现有的结构材料均未表现出质量密度、强度、可变形性和阻尼能力的可比组合。因此,本研究结果说明了致密和纳米多孔非晶碳材料作为优质结构纳米材料的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验