Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States.
Institute of Physics, Chinese Academy of Sciences , Beijing, China.
ACS Appl Mater Interfaces. 2017 Jul 12;9(27):23175-23180. doi: 10.1021/acsami.7b04934. Epub 2017 Jun 28.
Recent renewed interest in layered transition metal dichalcogenides stems from the exotic electronic phases predicted and observed in the single- and few-layer limit. Realizing these electronic phases requires preserving the desired transport properties down to a monolayer, which is challenging. Surface oxides are known to impart Fermi level pinning or degrade the mobility on a number of different systems, including transition metal dichalcogenides and black phosphorus. Semimetallic WTe exhibits large magnetoresistance due to electron-hole compensation; thus, Fermi level pinning in thin WTe flakes could break the electron-hole balance and suppress the large magnetoresistance. We show that WTe develops an ∼2 nm thick amorphous surface oxide, which shifts the Fermi level by ∼300 meV at the WTe surface. We also observe a dramatic suppression of the magnetoresistance for thin flakes. However, due to the semimetallic nature of WTe, the effects of Fermi level pinning are well screened and are not the dominant cause for the suppression of magnetoresistance, supported by fitting a two-band model to the transport data, which showed the electron and hole carrier densities are balanced down to ∼13 nm. However, the fitting shows a significant decrease of the mobilities of both electrons and holes. We attribute this to the disorder introduced by the amorphous surface oxide layer. Thus, the decrease of mobility is the dominant factor in the suppression of magnetoresistance for thin WTe flakes. Our study highlights the critical need to investigate often unanticipated and sometimes unavoidable extrinsic surface effects on the transport properties of layered dichalcogenides and other 2D materials.
最近,人们对层状过渡金属二卤化物的兴趣重新燃起,这源于在单层和少数层极限中预测和观察到的奇异电子相。实现这些电子相需要在单层下保持所需的传输特性,这是具有挑战性的。众所周知,表面氧化物会在许多不同的系统中产生费米能级钉扎或降低迁移率,包括过渡金属二卤化物和黑磷。半金属 WTe 由于电子-空穴补偿而表现出大磁电阻;因此,在薄 WTe 薄片中费米能级钉扎可能会打破电子-空穴平衡并抑制大磁电阻。我们表明,WTe 会形成一层约 2nm 厚的非晶表面氧化物,这会使 WTe 表面的费米能级偏移约 300meV。我们还观察到薄片状 WTe 的磁电阻急剧下降。然而,由于 WTe 的半金属性质,费米能级钉扎的影响得到了很好的屏蔽,并且不是抑制磁电阻的主要原因,这得到了对传输数据进行双带模型拟合的支持,拟合结果表明电子和空穴载流子密度在低至 13nm 时达到平衡。然而,拟合表明电子和空穴的迁移率都显著下降。我们将其归因于非晶表面氧化物层引入的无序。因此,对于薄 WTe 薄片,迁移率的降低是抑制磁电阻的主要因素。我们的研究强调了在研究层状二卤化物和其他二维材料的传输特性时,需要研究通常未预料到的、有时是不可避免的外在表面效应。