Leroy Céline, Jauneau Alain, Martinez Yves, Cabin-Flaman Armelle, Gibouin David, Orivel Jérôme, Séjalon-Delmas Nathalie
AMAP, IRD, CIRAD, CNRS, INRA, Université Montpellier, Montpellier, France.
CNRS, FR3450 Fédération de Recherches Agrobiosciences Interactions et Biodiversité, Plateforme TRI d'imagerie cellulaire de Toulouse, 24 Chemin de Borde Rouge, B.p. 42?617 Auzeville, 31326 Castanet-Tolosan, France.
Ann Bot. 2017 Sep 1;120(3):417-426. doi: 10.1093/aob/mcx064.
The plant Hirtella physophora, the ant Allomerus decemarticulatus and a fungus, Trimmatostroma sp., form a tripartite association. The ants manipulate both the plant trichomes and the fungus to build galleries under the stems of their host plant used to capture prey. In addition to its structural role, the fungus also improves nutrient uptake by the host plant. But it still remains unclear whether the fungus plays an indirect or a direct role in transferring nutrients to the plant. This study aimed to trace the transfer of N from the fungus to the plant's stem tissue.
Optical microscopy and transmission electron microscopy (TEM) were used to investigate the presence of fungal hyphae in the stem tissues. Then, a 15N-labelling experiment was combined with a nanoscale secondary-ion mass spectrometry (NanoSIMS 50) isotopic imaging approach to trace the movement of added 15N from the fungus to plant tissues.
The TEM images clearly showed hyphae inside the stem tissue in the cellular compartment. Also, fungal hyphae were seen perforating the wall of the parenchyma cell. The 15N provisioning of the fungus in the galleries resulted in significant enrichment of the 15N signature of the plant's leaves 1 d after the 15N-labelling solution was deposited on the fungus-bearing trap. Finally, NanoSIMS imaging proved that nitrogen was transferred biotrophically from the fungus to the stem tissue.
This study provides evidence that the fungi are connected endophytically to an ant-plant system and actively transfer nitrogen from 15N-labelling solution to the plant's stem tissues. Overall, this study underlines how complex the trophic structure of ant-plant interactions is due to the presence of the fungus and provides insight into the possibly important nutritional aspects and tradeoffs involved in myrmecophyte-ant mutualisms.
植物多毛希氏木、蚂蚁十节全异蚁属以及一种真菌——Trimmatostroma属真菌形成了一种三方共生关系。蚂蚁操控植物的毛状体和真菌,在其寄主植物的茎干下方构建用于捕获猎物的通道。除了其结构作用外,真菌还能改善寄主植物对养分的吸收。但真菌在向植物转运养分过程中是发挥间接作用还是直接作用仍不清楚。本研究旨在追踪氮从真菌向植物茎组织的转移。
利用光学显微镜和透射电子显微镜(TEM)研究茎组织中真菌菌丝的存在情况。然后,将15N标记实验与纳米级二次离子质谱(NanoSIMS 50)同位素成像方法相结合,以追踪添加的15N从真菌向植物组织的移动。
透射电子显微镜图像清楚地显示了茎组织细胞区室内的菌丝。此外,还观察到真菌菌丝穿透薄壁细胞的细胞壁。在含真菌的陷阱上滴加15N标记溶液1天后,通道内真菌的15N供应导致植物叶片的15N信号显著富集。最后,纳米二次离子质谱成像证明氮以活体营养方式从真菌转移到茎组织。
本研究提供了证据,表明真菌以内生方式与蚁 - 植物系统相连,并能将15N标记溶液中的氮主动转移到植物茎组织中。总体而言,本研究强调了由于真菌的存在,蚁 - 植物相互作用的营养结构是多么复杂,并深入了解了蚁栖植物 - 蚂蚁共生关系中可能重要的营养方面及权衡。