Vascak Michal, Sun Jianli, Baer Matthew, Jacobs Kimberle M, Povlishock John T
Department of Anatomy and Neurobiology, Virginia Commonwealth University School of MedicineRichmond, VA, United States.
Front Cell Neurosci. 2017 Jun 6;11:157. doi: 10.3389/fncel.2017.00157. eCollection 2017.
The axon initial segment (AIS) is the site of action potential (AP) initiation, thus a crucial regulator of neuronal activity. In excitatory pyramidal neurons, the high density of voltage-gated sodium channels (NaV1.6) at the distal AIS regulates AP initiation. A surrogate AIS marker, ankyrin-G (ankG) is a structural protein regulating neuronal functional via clustering voltage-gated ion channels. In neuronal circuits, changes in presynaptic input can alter postsynaptic output via AIS structural-functional plasticity. Recently, we showed experimental mild traumatic brain injury (mTBI) evokes neocortical circuit disruption via diffuse axonal injury (DAI) of excitatory and inhibitory neuronal systems. A key finding was that mTBI-induced neocortical electrophysiological changes involved non-DAI/ intact excitatory pyramidal neurons consistent with AIS-specific alterations. In the current study we employed Thy1-yellow fluorescent protein (YFP)-H mice to test if mTBI induces AIS structural and/or functional plasticity within intact pyramidal neurons 2 days after mTBI. We used confocal microscopy to assess intact YFP+ pyramidal neurons in layer 5 of primary somatosensory barrel field (S1BF), whose axons were continuous from the soma of origin to the subcortical white matter (SCWM). YFP+ axonal traces were superimposed on ankG and NaV1.6 immunofluorescent profiles to determine AIS position and length. We found that while mTBI had no effect on ankG start position, the length significantly decreased from the distal end, consistent with the site of AP initiation at the AIS. However, NaV1.6 structure did not change after mTBI, suggesting uncoupling from ankG. Parallel quantitative analysis of presynaptic inhibitory terminals along the postsynaptic perisomatic domain of these same intact YFP+ excitatory pyramidal neurons revealed a significant decrease in GABAergic bouton density. Also within this non-DAI population, patch-clamp recordings of intact YFP+ pyramidal neurons showed AP acceleration decreased 2 days post-mTBI, consistent with AIS functional plasticity. Simulations of realistic pyramidal neuron computational models using experimentally determined AIS lengths showed a subtle decrease is NaV1.6 density is sufficient to attenuate AP acceleration. Collectively, these findings highlight the complexity of mTBI-induced neocortical circuit disruption, involving changes in extrinsic/presynaptic inhibitory perisomatic input interfaced with intrinsic/postsynaptic intact excitatory neuron AIS output.
轴突起始段(AIS)是动作电位(AP)起始的部位,因此是神经元活动的关键调节因子。在兴奋性锥体神经元中,远端AIS处电压门控钠通道(NaV1.6)的高密度调节AP起始。一种替代性AIS标记物锚蛋白-G(ankG)是一种结构蛋白,通过聚集电压门控离子通道来调节神经元功能。在神经元回路中,突触前输入的变化可通过AIS的结构-功能可塑性改变突触后输出。最近,我们发现实验性轻度创伤性脑损伤(mTBI)通过兴奋性和抑制性神经元系统的弥漫性轴突损伤(DAI)引起新皮质回路破坏。一个关键发现是,mTBI诱导的新皮质电生理变化涉及与AIS特异性改变一致的非DAI/完整兴奋性锥体神经元。在本研究中,我们使用Thy1-黄色荧光蛋白(YFP)-H小鼠来测试mTBI是否在mTBI后2天内在完整的锥体神经元内诱导AIS结构和/或功能可塑性。我们使用共聚焦显微镜评估初级体感桶状区(S1BF)第5层中完整的YFP+锥体神经元,其轴突从起源的胞体连续到皮质下白质(SCWM)。将YFP+轴突轨迹叠加在ankG和NaV1.6免疫荧光图谱上,以确定AIS的位置和长度。我们发现,虽然mTBI对ankG起始位置没有影响,但长度从远端显著缩短,这与AIS处AP起始的部位一致。然而,mTBI后NaV1.6结构没有变化,表明与ankG解偶联。对这些相同的完整YFP+兴奋性锥体神经元的突触后胞体周围区域的突触前抑制性终末进行平行定量分析,发现GABA能突触小体密度显著降低。同样在这个非DAI群体中,对完整的YFP+锥体神经元进行膜片钳记录显示,mTBI后2天AP加速降低,这与AIS功能可塑性一致。使用实验确定的AIS长度对真实锥体神经元计算模型进行模拟表明,NaV1.6密度的轻微降低足以减弱AP加速。总的来说,这些发现突出了mTBI诱导的新皮质回路破坏的复杂性,涉及外在/突触前抑制性胞体周围输入与内在/突触后完整兴奋性神经元AIS输出的变化。