Suppr超能文献

肌电图数据处理对正常儿童和脑瘫儿童步态期间肌肉协同作用的影响。

Electromyography Data Processing Impacts Muscle Synergies during Gait for Unimpaired Children and Children with Cerebral Palsy.

作者信息

Shuman Benjamin R, Schwartz Michael H, Steele Katherine M

机构信息

Department of Mechanical Engineering, University of WashingtonSeattle, WA, United States.

WRF Institute for Neuroengineering, University of WashingtonSeattle, WA, United States.

出版信息

Front Comput Neurosci. 2017 Jun 6;11:50. doi: 10.3389/fncom.2017.00050. eCollection 2017.

Abstract

Muscle synergies calculated from electromyography (EMG) data identify weighted groups of muscles activated together during functional tasks. Research has shown that fewer synergies are required to describe EMG data of individuals with neurologic impairments. When considering potential clinical applications of synergies, understanding how EMG data processing impacts results and clinical interpretation is important. The aim of this study was to evaluate how EMG signal processing impacts synergy outputs during gait. We evaluated the impacts of two common processing steps for synergy analyses: low pass (LP) filtering and unit variance scaling. We evaluated EMG data collected during barefoot walking from five muscles of 113 children with cerebral palsy (CP) and 73 typically-developing (TD) children. We applied LP filters to the EMG data with cutoff frequencies ranging from 4 to 40 Hz (reflecting the range reported in prior synergy research). We also evaluated the impact of normalizing EMG amplitude by unit variance. We found that the total variance accounted for (tVAF) by a given number of synergies was sensitive to LP filter choice and decreased in both TD and CP groups with increasing LP cutoff frequency (e.g., 9.3 percentage points change for one synergy between 4 and 40 Hz). This change in tVAF can alter the number of synergies selected for further analyses. Normalizing tVAF to a z-score (e.g., dynamic motor control index during walking, walk-DMC) reduced sensitivity to LP cutoff. Unit variance scaling caused comparatively small changes in tVAF. Synergy weights and activations were impacted less than tVAF by LP filter choice and unit variance normalization. These results demonstrate that EMG signal processing methods impact outputs of synergy analysis and z-score based measures can assist in reporting and comparing results across studies and clinical centers.

摘要

从肌电图(EMG)数据计算得出的肌肉协同作用可识别在功能任务期间共同激活的加权肌肉群。研究表明,描述神经功能障碍个体的EMG数据所需的协同作用较少。在考虑协同作用的潜在临床应用时,了解EMG数据处理如何影响结果和临床解释非常重要。本研究的目的是评估EMG信号处理在步态期间如何影响协同作用输出。我们评估了协同作用分析中两个常见处理步骤的影响:低通(LP)滤波和单位方差缩放。我们评估了113名脑瘫(CP)儿童和73名发育正常(TD)儿童在赤脚行走期间从五块肌肉收集的EMG数据。我们将LP滤波器应用于EMG数据,截止频率范围为4至40Hz(反映先前协同作用研究中报告的范围)。我们还评估了通过单位方差对EMG幅度进行归一化的影响。我们发现,给定数量的协同作用所解释的总方差(tVAF)对LP滤波器的选择敏感,并且在TD组和CP组中均随着LP截止频率的增加而降低(例如,在4至40Hz之间,一个协同作用的变化为9.3个百分点)。tVAF的这种变化可能会改变为进一步分析而选择的协同作用数量。将tVAF归一化为z分数(例如,步行期间的动态运动控制指数,walk-DMC)可降低对LP截止的敏感性。单位方差缩放导致tVAF的变化相对较小。LP滤波器选择和单位方差归一化对协同作用权重和激活的影响小于对tVAF的影响。这些结果表明,EMG信号处理方法会影响协同作用分析的输出,基于z分数的测量方法有助于跨研究和临床中心报告和比较结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bc7/5460588/8a9d8655e4ac/fncom-11-00050-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验