Suppr超能文献

一个最小连续时间 Markov 药效计量学模型。

A Minimal Continuous-Time Markov Pharmacometric Model.

机构信息

Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124, Uppsala, Sweden.

出版信息

AAPS J. 2017 Sep;19(5):1424-1435. doi: 10.1208/s12248-017-0109-1. Epub 2017 Jun 20.

Abstract

In this work, an alternative model to discrete-time Markov model (DTMM) or standard continuous-time Markov model (CTMM) for analyzing ordered categorical data with Markov properties is presented: the minimal CTMM (mCTMM). Through a CTMM reparameterization and under the assumption that the transition rate between two consecutive states is independent on the state, the Markov property is expressed through a single parameter, the mean equilibration time, and the steady-state probabilities are described by a proportional odds (PO) model. The mCTMM performance was evaluated and compared to the PO model (ignoring Markov features) and to published Markov models using three real data examples: the four-state fatigue and hand-foot syndrome data in cancer patients initially described by DTMM and the 11-state Likert pain score data in diabetic patients previously analyzed with a count model including Markovian transition probability inflation. The mCTMM better described the data than the PO model, and adequately predicted the average number of transitions per patient and the maximum achieved scores in all examples. As expected, mCTMM could not describe the data as well as more flexible DTMM but required fewer estimated parameters. The mCTMM better fitted Likert data than the count model. The mCTMM enables to explore the effect of potential predictive factors such as drug exposure and covariates, on ordered categorical data, while accounting for Markov features, in cases where DTMM and/or standard CTMM is not applicable or conveniently implemented, e.g., non-uniform time intervals between observations or large number of categories.

摘要

在这项工作中,提出了一种替代离散时间马尔可夫模型 (DTMM) 或标准连续时间马尔可夫模型 (CTMM) 的方法,用于分析具有马尔可夫性质的有序分类数据:最小 CTMM (mCTMM)。通过 CTMM 的重新参数化,并假设两个连续状态之间的转移率与状态无关,马尔可夫性质通过单个参数表示,即平均平衡时间,稳态概率由比例优势 (PO) 模型描述。通过三个真实数据示例评估了 mCTMM 的性能,并与 PO 模型(忽略马尔可夫特征)和已发表的马尔可夫模型进行了比较:最初用 DTMM 描述的癌症患者的四状态疲劳和手足综合征数据和以前用包含马尔可夫转移概率膨胀的计数模型分析的糖尿病患者的 11 状态李克特疼痛评分数据。mCTMM 比 PO 模型更好地描述了数据,并且在所有示例中都充分预测了每个患者的平均转移次数和最大达到的分数。正如预期的那样,mCTMM 不能像更灵活的 DTMM 那样很好地描述数据,但需要更少的估计参数。mCTMM 比计数模型更适合描述李克特数据。mCTMM 能够在考虑到马尔可夫特征的情况下,探索药物暴露和协变量等潜在预测因素对有序分类数据的影响,而在 DTMM 和/或标准 CTMM 不适用或不方便实施的情况下,例如观察之间的非均匀时间间隔或大量类别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验