Suppr超能文献

在NONMEM中对有序分类数据进行建模时I类错误率的评估。

Evaluation of type I error rates when modeling ordered categorical data in NONMEM.

作者信息

Wählby Ulrika, Matolcsi Katalin, Karlsson Mats O, Jonsson E Niclas

机构信息

Division of Pharmacokinctics and Drug Therapy, Department of Pharmaceutical Biosciences, Uppsala University. Box 591. 751 24 Uppsala, Sweden.

出版信息

J Pharmacokinet Pharmacodyn. 2004 Feb;31(1):61-74. doi: 10.1023/b:jopa.0000029489.97168.a9.

Abstract

The development of non-linear mixed pharmacokinetic/pharmacodynamic models for continuous variables is usually guided by graphical assessment of goodness of fit and statistical significance criteria. The latter is usually the likelihood ratio test (LR). When the variable to be modeled is categorical, on the other hand, the available graphical methods are less informative and/or more complicated to use and the modeler needs to rely more heavily on statistical significance assessment in the model development. The aim of this study was to evaluate the type I error rates, obtained from using the LR test, for inclusion of a false parameter in a non-linear mixed effects model for ordered categorical data when modeling with NONMEM. Data with four ordinal categories were simulated from a logistic model. Two nested multinomial models were fitted to the data, the model used for simulation and a model containing one additional parameter. The difference in fit (objective function value) between models was calculated. Three types of models were explored; (i) a model without interindividual variability (IIV) where the addition of a parameter describing IIV was assessed, (ii) a model with IIV where the addition of a drug effect parameter (either categorical or continuous drug exposure measure) was evaluated, and (iii) a model including IIV and drug effect where the inclusion of a random effects parameter on the drug effect was assessed. Alterations were made to the simulation conditions, for example, varying the number of individuals and the size and distribution of the IIV, to explore potential influences on the type I error rate. The estimated type I error rate for inclusion of a false random effect parameter in model (i) and (iii) were, as expected, lower than the nominal. When the additional parameter was a fixed effects parameter describing drug effect (model(II)) the estimated type I error rates were in agreement with the nominal. None of the different simulation conditions tried changed this pattern. Thus, the LR test seems appropriate for judging the statistical significance of fixed effects parameters when modeling categorical data with NONMEM.

摘要

连续变量的非线性混合药代动力学/药效学模型的开发通常以拟合优度的图形评估和统计显著性标准为指导。后者通常是似然比检验(LR)。另一方面,当要建模的变量是分类变量时,可用的图形方法信息量较少且/或使用起来更复杂,建模者在模型开发中需要更依赖统计显著性评估。本研究的目的是评估在使用NONMEM对有序分类数据进行建模时,通过LR检验将错误参数纳入非线性混合效应模型所获得的I型错误率。从逻辑模型模拟了具有四个有序类别的数据。将两个嵌套的多项模型拟合到数据中,一个是用于模拟的模型,另一个是包含一个额外参数的模型。计算了模型之间的拟合差异(目标函数值)。探索了三种类型的模型:(i)一个没有个体间变异性(IIV)的模型,评估添加一个描述IIV的参数;(ii)一个具有IIV的模型,评估添加一个药物效应参数(分类或连续药物暴露测量);(iii)一个包括IIV和药物效应的模型,评估在药物效应上添加一个随机效应参数。对模拟条件进行了改变,例如,改变个体数量以及IIV的大小和分布,以探索对I型错误率的潜在影响。如预期的那样,在模型(i)和(iii)中纳入错误随机效应参数的估计I型错误率低于名义值。当额外参数是描述药物效应的固定效应参数时(模型(II)),估计的I型错误率与名义值一致。所尝试的不同模拟条件均未改变这种模式。因此,当使用NONMEM对分类数据进行建模时,LR检验似乎适用于判断固定效应参数的统计显著性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验