Suppr超能文献

类别风险感知驱动急诊科抗生素处方的变异性:一项混合方法观察性研究。

Categorical Risk Perception Drives Variability in Antibiotic Prescribing in the Emergency Department: A Mixed Methods Observational Study.

机构信息

Department of Emergency Medicine, Johns Hopkins School of Medicine, 5801 Smith Avenue, Suite 3220, Office 265, Davis Building, Baltimore, MD, 21209, USA.

Center for Disease Dynamics, Economics & Policy, Washington, DC, USA.

出版信息

J Gen Intern Med. 2017 Oct;32(10):1083-1089. doi: 10.1007/s11606-017-4099-6. Epub 2017 Jun 20.

Abstract

BACKGROUND

Adherence to evidence-based antibiotic therapy guidelines for treatment of upper respiratory tract infections (URIs) varies widely among clinicians. Understanding this variability is key for reducing inappropriate prescribing.

OBJECTIVE

To measure how emergency department (ED) clinicians' perceptions of antibiotic prescribing risks affect their decision-making.

DESIGN

Clinician survey based on fuzzy-trace theory, a theory of medical decision-making, combined with retrospective data on prescribing outcomes for URI/pneumonia visits in two EDs. The survey predicts the categorical meanings, or gists, that individuals derive from given information.

PARTICIPANTS

ED physicians, residents, and physician assistants (PAs) who completed surveys and treated patients with URI/pneumonia diagnoses between August 2014 and December 2015.

MAIN MEASURES

Gists derived from survey responses and their association with rates of antibiotic prescribing per visit.

KEY RESULTS

Of 4474 URI/pneumonia visits, 2874 (64.2%) had an antibiotic prescription. However, prescribing rates varied from 7% to 91% for the 69 clinicians surveyed (65.2% response rate). Clinicians who framed therapy-prescribing decisions as a categorical choice between continued illness and possibly beneficial treatment ("why not take a risk?" gist, which assumes antibiotic therapy is essentially harmless) had higher rates of prescribing (OR 1.28 [95% CI, 1.06-1.54]). Greater agreement with the "antibiotics may be harmful" gist was associated with lower prescribing rates (OR 0.81 [95% CI, 0.67-0.98]).

CONCLUSIONS

Our results indicate that clinicians who perceive prescribing as a categorical choice between patients remaining ill or possibly improving from therapy are more likely to prescribe antibiotics. However, this strategy assumes that antibiotics are essentially harmless. Clinicians who framed decision-making as a choice between potential harms from therapy and continued patient illness (e.g., increased appreciation of potential harms) had lower prescribing rates. These results suggest that interventions to reduce inappropriate prescribing should emphasize the non-negligible possibility of serious side effects.

摘要

背景

临床医生在治疗上呼吸道感染(URIs)时,对抗生素治疗指南的遵循情况存在很大差异。了解这种变异性对于减少不适当的处方至关重要。

目的

测量急诊科(ED)临床医生对抗生素处方风险的看法如何影响他们的决策。

设计

基于模糊痕迹理论的临床医生调查,该理论是一种医学决策理论,结合了两家 ED 中 URIs/肺炎就诊的回顾性处方结果数据。该调查预测了个体从给定信息中得出的类别含义或主旨。

参与者

在 2014 年 8 月至 2015 年 12 月期间完成 URIs/肺炎诊断治疗的 ED 医生、住院医师和医师助理(PA)。

主要措施

从调查回复中得出的主旨及其与每次就诊抗生素处方率的关联。

主要结果

在 4474 次 URIs/肺炎就诊中,有 2874 次(64.2%)开具了抗生素处方。然而,接受调查的 69 名临床医生中,处方率从 7%到 91%不等(65.2%的回复率)。将治疗-处方决策框定为继续患病和可能有益治疗之间的分类选择的临床医生(“为什么不冒险?”主旨,假设抗生素治疗基本上是无害的)的处方率更高(OR 1.28 [95%CI,1.06-1.54])。与“抗生素可能有害”主旨的一致性越高,处方率越低(OR 0.81 [95%CI,0.67-0.98])。

结论

我们的结果表明,将处方视为患者继续患病或可能因治疗而改善的分类选择的临床医生更有可能开具抗生素。然而,这种策略假设抗生素基本上是无害的。将决策制定框定为治疗潜在危害与患者持续患病之间的选择的临床医生(例如,增加对潜在危害的认识)的处方率较低。这些结果表明,减少不适当处方的干预措施应强调严重副作用的不可忽视的可能性。

相似文献

9
Antibiotic prescriptions for upper respiratory tract infection in Japan.日本上呼吸道感染的抗生素处方
Intern Med. 2009;48(16):1369-75. doi: 10.2169/internalmedicine.48.1893. Epub 2009 Aug 17.

引用本文的文献

本文引用的文献

1
Tipping the Balance Toward Fewer Antibiotics.向减少抗生素使用转变
JAMA Intern Med. 2016 Nov 1;176(11):1649-1650. doi: 10.1001/jamainternmed.2016.6254.
6
Variation in Antibiotic Prescribing Across a Pediatric Primary Care Network.儿科初级保健网络中抗生素处方的差异
J Pediatric Infect Dis Soc. 2015 Dec;4(4):297-304. doi: 10.1093/jpids/piu086. Epub 2014 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验