Suppr超能文献

基于相转变微相分离的高拉伸形状记忆有机水凝胶

Highly Stretchable, Shape Memory Organohydrogels Using Phase-Transition Microinclusions.

机构信息

Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China.

International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, P. R. China.

出版信息

Adv Mater. 2017 Sep;29(33). doi: 10.1002/adma.201701695. Epub 2017 Jun 21.

Abstract

Shape memory effect in polymer materials has attracted considerable attention due to its promising applications in a variety of fields. However, shape memory polymers prepared by conventional strategy suffer from a common problem, in which high strain capacity and excellent shape memory behavior cannot be simultaneously achieved. This study reports a general and synergistic strategy to fabricate high-strain and tough shape memory organohydrogels that feature binary cooperative phase. The phase- transition micro-organogels and elastic hydrogel framework act synergistically to provide excellent thermomechanical performance and shape memory effect. During shape memory process, the organohydrogels exhibit high strain capacity, featuring fully recoverable stretching deformation by up to 2600% and compression by up to 85% beneath a load ≈20 times the organohydrogel's weight. Furthermore, owing to the micro-organogel and hydrogel heterostructures, the interfacial tension derived from heterophases dominates the shape recovery of the organohydrogel material. Simple processing and smart surface patterning of the shape memory behavior and multiple shape memory effects can also be realized. Meanwhile, these organohydrogels are also nonswellable in water and oil, which is important for multimedia applications.

摘要

高分子材料的形状记忆效应因其在诸多领域的广阔应用前景而受到广泛关注。然而,传统方法制备的形状记忆聚合物普遍存在一个问题,即无法同时兼具高应变能力和优异的形状记忆性能。本研究报道了一种通用的协同策略,用于制备具有二元协同相的高应变和坚韧的形状记忆有机水凝胶。相转变微有机凝胶和弹性水凝胶骨架协同作用,提供了优异的热机械性能和形状记忆效应。在形状记忆过程中,有机水凝胶表现出高应变能力,在负载约为有机水凝胶重量 20 倍的情况下,可实现高达 2600%的完全可恢复拉伸变形和 85%的压缩变形。此外,由于微有机凝胶和水凝胶的异质结构,源自异相的界面张力主导了有机水凝胶材料的形状回复。还可以实现形状记忆行为和多种形状记忆效应的简单加工和智能表面图案化。同时,这些有机水凝胶在水和油中也不可溶胀,这对于多媒体应用很重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验