State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China.
Collaborative Innovation Center of Quantum Matter, Beijing 100871, China.
Nat Commun. 2017 Jun 21;8:15688. doi: 10.1038/ncomms15688.
Hybrid lead halide perovskites have emerged as high-performance photovoltaic materials with their extraordinary optoelectronic properties. In particular, the remarkable device efficiency is strongly influenced by the perovskite crystallinity and the film morphology. Here, we investigate the perovskites crystallisation kinetics and growth mechanism in real time from liquid precursor continually to the final uniform film. We utilize some advanced in situ characterisation techniques including synchrotron-based grazing incident X-ray diffraction to observe crystal structure and chemical transition of perovskites. The nano-assemble model from perovskite intermediated [PbI] cage nanoparticles to bulk polycrystals is proposed to understand perovskites formation at a molecular- or nano-level. A crystallisation-depletion mechanism is developed to elucidate the periodic crystallisation and the kinetically trapped morphology at a mesoscopic level. Based on these in situ dynamics studies, the whole process of the perovskites formation and transformation from the molecular to the microstructure over relevant temperature and time scales is successfully demonstrated.
卤化铅钙钛矿作为一种高性能的光伏材料,具有优异的光电性能。特别是,器件效率的显著提高与钙钛矿结晶度和薄膜形貌密切相关。在这项工作中,我们从液态前驱体连续到最终均匀的薄膜,实时研究钙钛矿的成核动力学和生长机制。我们利用了一些先进的原位表征技术,包括基于同步辐射的掠入射 X 射线衍射,以观察钙钛矿的晶体结构和化学转变。我们提出了钙钛矿中间[PbI]笼纳米粒子到体相多晶的纳米组装模型,以在分子或纳米水平上理解钙钛矿的形成。我们还开发了一个成核耗散机制来阐明介观尺度上的周期性成核和动力学捕获形态。基于这些原位动力学研究,成功地展示了钙钛矿从分子到微结构的形成和转化过程,以及在相关温度和时间尺度上的转变。