Suppr超能文献

有序分类与任意相异度量:一种加权欧式解决方案。

Ordination with any dissimilarity measure: a weighted Euclidean solution.

机构信息

Department of Economics and Business, Universitat Pompeu Fabra & Barcelona Graduate School of Economics, Ramon Trias Fargas, 25-27, Barcelona, 08005, Spain.

Akvaplan-niva, FRAM, High North Research Centre for Climate and the Environment, Tromsø, 9296, Norway.

出版信息

Ecology. 2017 Sep;98(9):2293-2300. doi: 10.1002/ecy.1937. Epub 2017 Aug 22.

Abstract

The classical approach to ordination is to use variants of the Euclidean distance to measure differences between samples (e.g., sites in a community study) based on their observation vectors (e.g., abundance counts for a set of species). Examples include Euclidean distance on standardized or log-transformed data, on which principal component analysis and redundancy analysis are based; chi-square distance, on which (canonical) correspondence analysis is based; and Hellinger distance, using square roots of relative values in each multivariate vector. Advantages of the Euclidean approach include the neat decomposition of variance and the ordination's optimal biplot display. To extend this approach to any non-Euclidean or nonmetric dissimilarity, a simple solution is proposed, consisting of the estimation of a weighted Euclidean distance that optimally approximates the dissimilarities. This preliminary step preserves the good properties of the classical approach while giving two additional benefits as by-products. Firstly, the estimated species weights, quantifying each species' contribution to the dissimilarities, can be interpreted, and weights equal or close to zero can assist in variable selection. Secondly, the dimensionality remains that of the number of species, not the dimensionality inherent in the dissimilarities, which depends on the number of samples and can be considerably higher.

摘要

经典的排序方法是使用欧几里得距离的变体来度量样本(例如群落研究中的站点)之间的差异,基于它们的观测向量(例如,一组物种的丰度计数)。例如,基于标准化或对数变换数据的欧几里得距离,这是主成分分析和冗余分析的基础;基于卡方距离的典范对应分析;以及基于每个多元向量中相对值平方根的 Hellinger 距离。欧几里得方法的优点包括方差的整洁分解和排序的最佳双标图显示。为了将这种方法扩展到任何非欧几里得或非度量的不相似性,可以提出一个简单的解决方案,包括估计一个加权的欧几里得距离,该距离最佳地逼近不相似性。这个初步步骤保留了经典方法的良好特性,同时作为副产品提供了两个额外的好处。首先,估计的物种权重可以量化每个物种对不相似性的贡献,并可以解释权重等于或接近零的情况,可以帮助进行变量选择。其次,维度仍然是物种数量的维度,而不是不相似性固有的维度,这取决于样本数量,并且可能高得多。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验